IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50815-x.html
   My bibliography  Save this article

Narrowband clusteroluminescence with 100% quantum yield enabled by through-space conjugation of asymmetric conformation

Author

Listed:
  • Yipu Wang

    (Zhejiang University
    Zhejiang University)

  • Jianyu Zhang

    (The Hong Kong University of Science and Technology)

  • Qingyang Xu

    (Zhejiang University
    Zhejiang University
    Zhejiang University)

  • Weihao Tu

    (Zhejiang University
    Zhejiang University
    Zhejiang University)

  • Lei Wang

    (Zhejiang University
    Zhejiang University)

  • Yuan Xie

    (Zhejiang University
    Zhejiang University)

  • Jing Zhi Sun

    (Zhejiang University
    Zhejiang University)

  • Feihe Huang

    (Zhejiang University
    Zhejiang University)

  • Haoke Zhang

    (Zhejiang University
    Zhejiang University
    Zhejiang University)

  • Ben Zhong Tang

    (Zhejiang University
    The Hong Kong University of Science and Technology
    The Chinese University of Hong Kong, Shenzhen (CUHK-SZ))

Abstract

Different from traditional organic luminescent materials based on covalent delocalization, clusteroluminescence from nonconjugated luminogens relies on noncovalent through-space conjugation of electrons. However, such spatial electron delocalization is usually weak, resulting in low luminescent efficiency and board emission peak due to multiple vibrational energy levels. Herein, several nonconjugated luminogens are constructed by employing biphenyl as the building unit to reveal the structure-property relationship and solve current challenges. The intramolecular through-space conjugation can be gradually strengthened by introducing building units and stabilized by rigid molecular skeleton and multiple intermolecular interactions. Surprisingly, narrowband clusteroluminescence with full width at half-maximum of 40 nm and 100% efficiency is successfully achieved via an asymmetric conformation, exhibiting comparable performance to the traditional conjugated luminogens. This work realizes highly efficient and narrowband clusteroluminescence from nonconjugated luminogens and highlights the essential role of structural conformation in manipulating the photophysical properties of unconventional luminescent materials.

Suggested Citation

  • Yipu Wang & Jianyu Zhang & Qingyang Xu & Weihao Tu & Lei Wang & Yuan Xie & Jing Zhi Sun & Feihe Huang & Haoke Zhang & Ben Zhong Tang, 2024. "Narrowband clusteroluminescence with 100% quantum yield enabled by through-space conjugation of asymmetric conformation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50815-x
    DOI: 10.1038/s41467-024-50815-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50815-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50815-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bo Song & Jianyu Zhang & Jiadong Zhou & Anjun Qin & Jacky W. Y. Lam & Ben Zhong Tang, 2023. "Facile conversion of water to functional molecules and cross-linked polymeric films with efficient clusteroluminescence," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Qiuju Li & Xingyi Wang & Qisu Huang & Zhuo Li & Ben Zhong Tang & Shun Mao, 2023. "Molecular-level enhanced clusterization-triggered emission of nonconventional luminophores in dilute aqueous solution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Jianyu Zhang & Parvej Alam & Siwei Zhang & Hanchen Shen & Lianrui Hu & Herman H. Y. Sung & Ian D. Williams & Jianwei Sun & Jacky W. Y. Lam & Haoke Zhang & Ben Zhong Tang, 2022. "Secondary through-space interactions facilitated single-molecule white-light emission from clusteroluminogens," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Peilong Liao & Shihao Zang & Tongyue Wu & Hongjun Jin & Wenkai Wang & Jianbin Huang & Ben Zhong Tang & Yun Yan, 2021. "Generating circularly polarized luminescence from clusterization‐triggered emission using solid phase molecular self-assembly," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiuju Li & Xingyi Wang & Qisu Huang & Zhuo Li & Ben Zhong Tang & Shun Mao, 2023. "Molecular-level enhanced clusterization-triggered emission of nonconventional luminophores in dilute aqueous solution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Tianwen Zhu & Tianjia Yang & Qiang Zhang & Wang Zhang Yuan, 2022. "Clustering and halogen effects enabled red/near-infrared room temperature phosphorescence from aliphatic cyclic imides," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Jiayu Wu & Yuhuan Wang & Pan Jiang & Xiaolong Wang & Xin Jia & Feng Zhou, 2024. "Multiple hydrogen-bonding induced nonconventional red fluorescence emission in hydrogels," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Bo Song & Jianyu Zhang & Jiadong Zhou & Anjun Qin & Jacky W. Y. Lam & Ben Zhong Tang, 2023. "Facile conversion of water to functional molecules and cross-linked polymeric films with efficient clusteroluminescence," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50815-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.