IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47790-8.html
   My bibliography  Save this article

Photobody formation spatially segregates two opposing phytochrome B signaling actions of PIF5 degradation and stabilization

Author

Listed:
  • Ruth Jean Ae Kim

    (University of California)

  • De Fan

    (University of California)

  • Jiangman He

    (University of California)

  • Keunhwa Kim

    (University of California
    Gyeongsang National University)

  • Juan Du

    (University of California)

  • Meng Chen

    (University of California)

Abstract

Photoactivation of the plant photoreceptor and thermosensor phytochrome B (PHYB) triggers its condensation into subnuclear membraneless organelles named photobodies (PBs). However, the function of PBs in PHYB signaling remains frustratingly elusive. Here, we found that PHYB recruits PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) to PBs. Surprisingly, PHYB exerts opposing roles in degrading and stabilizing PIF5. Perturbing PB size by overproducing PHYB provoked a biphasic PIF5 response: while a moderate increase in PHYB enhanced PIF5 degradation, further elevating the PHYB level stabilized PIF5 by retaining more of it in enlarged PBs. Conversely, reducing PB size by dim light, which enhanced PB dynamics and nucleoplasmic PHYB and PIF5, switched the balance towards PIF5 degradation. Together, these results reveal that PB formation spatially segregates two antagonistic PHYB signaling actions – PIF5 stabilization in PBs and PIF5 degradation in the surrounding nucleoplasm – which could enable an environmentally sensitive, counterbalancing mechanism to titrate nucleoplasmic PIF5 and environmental responses.

Suggested Citation

  • Ruth Jean Ae Kim & De Fan & Jiangman He & Keunhwa Kim & Juan Du & Meng Chen, 2024. "Photobody formation spatially segregates two opposing phytochrome B signaling actions of PIF5 degradation and stabilization," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47790-8
    DOI: 10.1038/s41467-024-47790-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47790-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47790-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hua Li & E. Sethe Burgie & Zira T. K. Gannam & Huilin Li & Richard D. Vierstra, 2022. "Plant phytochrome B is an asymmetric dimer with unique signalling potential," Nature, Nature, vol. 604(7904), pages 127-133, April.
    2. Weimin Ni & Shou-Ling Xu & Eduardo González-Grandío & Robert J. Chalkley & Andreas F. R. Huhmer & Alma L. Burlingame & Zhi-Yong Wang & Peter H. Quail, 2017. "PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3," Nature Communications, Nature, vol. 8(1), pages 1-11, August.
    3. Inyup Paik & Fulu Chen & Vinh Ngoc Pham & Ling Zhu & Jeong-Il Kim & Enamul Huq, 2019. "A phyB-PIF1-SPA1 kinase regulatory complex promotes photomorphogenesis in Arabidopsis," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
    4. Paloma Más & Paul F. Devlin & Satchidananda Panda & Steve A. Kay, 2000. "Functional interaction of phytochrome B and cryptochrome 2," Nature, Nature, vol. 408(6809), pages 207-211, November.
    5. Tomonao Matsushita & Nobuyoshi Mochizuki & Akira Nagatani, 2003. "Dimers of the N-terminal domain of phytochrome B are functional in the nucleus," Nature, Nature, vol. 424(6948), pages 571-574, July.
    6. Joseph Hahm & Keunhwa Kim & Yongjian Qiu & Meng Chen, 2020. "Publisher Correction: Increasing ambient temperature progressively disassembles Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    7. Chun-Miao Feng & Yongjian Qiu & Elise K. Van Buskirk & Emily J. Yang & Meng Chen, 2014. "Light-regulated gene repositioning in Arabidopsis," Nature Communications, Nature, vol. 5(1), pages 1-9, May.
    8. Yongjian Qiu & Meina Li & Ruth Jean-Ae Kim & Carisha M. Moore & Meng Chen, 2019. "Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    9. Martina Legris & Yetkin Çaka Ince & Christian Fankhauser, 2019. "Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    10. Chan Yul Yoo & Elise K. Pasoreck & He Wang & Jun Cao & Gregor M. Blaha & Detlef Weigel & Meng Chen, 2019. "Phytochrome activates the plastid-encoded RNA polymerase for chloroplast biogenesis via nucleus-to-plastid signaling," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    11. Joseph Hahm & Keunhwa Kim & Yongjian Qiu & Meng Chen, 2020. "Increasing ambient temperature progressively disassembles Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    12. Ashutosh Sharma & Bhavana Sharma & Scott Hayes & Konstantin Kerner & Ute Hoecker & Gareth I. Jenkins & Keara A. Franklin, 2019. "UVR8 disrupts stabilisation of PIF5 by COP1 to inhibit plant stem elongation in sunlight," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    13. Ling Zhu & Qingyun Bu & Xiaosa Xu & Inyup Paik & Xi Huang & Ute Hoecker & Xing Wang Deng & Enamul Huq, 2015. "CUL4 forms an E3 ligase with COP1 and SPA to promote light-induced degradation of PIF1," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    14. Emily J. Yang & Chan Yul Yoo & Jiangxin Liu & He Wang & Jun Cao & Fay-Wei Li & Kathleen M. Pryer & Tai-ping Sun & Detlef Weigel & Pei Zhou & Meng Chen, 2019. "NCP activates chloroplast transcription by controlling phytochrome-dependent dual nuclear and plastidial switches," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    15. Chan Yul Yoo & Jiangman He & Qing Sang & Yongjian Qiu & Lingyun Long & Ruth Jean-Ae Kim & Emily G. Chong & Joseph Hahm & Nicholas Morffy & Pei Zhou & Lucia C. Strader & Akira Nagatani & Beixin Mo & Xu, 2021. "Direct photoresponsive inhibition of a p53-like transcription activation domain in PIF3 by Arabidopsis phytochrome B," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Du & Keunhwa Kim & Meng Chen, 2024. "Distinguishing individual photobodies using Oligopaints reveals thermo-sensitive and -insensitive phytochrome B condensation at distinct subnuclear locations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Du & Keunhwa Kim & Meng Chen, 2024. "Distinguishing individual photobodies using Oligopaints reveals thermo-sensitive and -insensitive phytochrome B condensation at distinct subnuclear locations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Chanhee Kim & Yongmin Kwon & Jaehoon Jeong & Minji Kang & Ga Seul Lee & Jeong Hee Moon & Hyo-Jun Lee & Youn-Il Park & Giltsu Choi, 2023. "Phytochrome B photobodies are comprised of phytochrome B and its primary and secondary interacting proteins," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Youra Hwang & Soeun Han & Chan Yul Yoo & Liu Hong & Chenjiang You & Brandon H. Le & Hui Shi & Shangwei Zhong & Ute Hoecker & Xuemei Chen & Meng Chen, 2022. "Anterograde signaling controls plastid transcription via sigma factors separately from nuclear photosynthesis genes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Qing Sang & Lusheng Fan & Tianxiang Liu & Yongjian Qiu & Juan Du & Beixin Mo & Meng Chen & Xuemei Chen, 2023. "MicroRNA156 conditions auxin sensitivity to enable growth plasticity in response to environmental changes in Arabidopsis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Weixiao Yuan Wahlgren & Elin Claesson & Iida Tuure & Sergio Trillo-Muyo & Szabolcs Bódizs & Janne A. Ihalainen & Heikki Takala & Sebastian Westenhoff, 2022. "Structural mechanism of signal transduction in a phytochrome histidine kinase," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. E. Sethe Burgie & Katherine Basore & Michael J. Rau & Brock Summers & Alayna J. Mickles & Vadim Grigura & James A. J. Fitzpatrick & Richard D. Vierstra, 2024. "Signaling by a bacterial phytochrome histidine kinase involves a conformational cascade reorganizing the dimeric photoreceptor," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Hui-Hsien Chang & Lin-Chen Huang & Karen S. Browning & Enamul Huq & Mei-Chun Cheng, 2024. "The phosphorylation of carboxyl-terminal eIF2α by SPA kinases contributes to enhanced translation efficiency during photomorphogenesis," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Wei Liu & Giovanni Giuriani & Anezka Havlikova & Dezhi Li & Douglas J. Lamont & Susanne Neugart & Christos N. Velanis & Jan Petersen & Ute Hoecker & John M. Christie & Gareth I. Jenkins, 2024. "Phosphorylation of Arabidopsis UVR8 photoreceptor modulates protein interactions and responses to UV-B radiation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Zenglin Li & David J. Sheerin & Edda Roepenack-Lahaye & Mark Stahl & Andreas Hiltbrunner, 2022. "The phytochrome interacting proteins ERF55 and ERF58 repress light-induced seed germination in Arabidopsis thaliana," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Yetkin Çaka Ince & Johanna Krahmer & Anne-Sophie Fiorucci & Martine Trevisan & Vinicius Costa Galvão & Leonore Wigger & Sylvain Pradervand & Laetitia Fouillen & Pierre Delft & Manon Genva & Sebastien , 2022. "A combination of plasma membrane sterol biosynthesis and autophagy is required for shade-induced hypocotyl elongation," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Giorgia Capasso & Giorgia Santini & Mariagioia Petraretti & Sergio Esposito & Simone Landi, 2021. "Wild and Traditional Barley Genomic Resources as a Tool for Abiotic Stress Tolerance and Biotic Relations," Agriculture, MDPI, vol. 11(11), pages 1-15, November.
    12. Shichen Li & Zhihui Sun & Qing Sang & Chao Qin & Lingping Kong & Xin Huang & Huan Liu & Tong Su & Haiyang Li & Milan He & Chao Fang & Lingshuang Wang & Shuangrong Liu & Bin Liu & Baohui Liu & Xiangdon, 2023. "Soybean reduced internode 1 determines internode length and improves grain yield at dense planting," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Dennis Vettkötter & Martin Schneider & Brady D. Goulden & Holger Dill & Jana Liewald & Sandra Zeiler & Julia Guldan & Yilmaz Arda Ateş & Shigeki Watanabe & Alexander Gottschalk, 2022. "Rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Urszula Piskurewicz & Maria Sentandreu & Mayumi Iwasaki & Gaëtan Glauser & Luis Lopez-Molina, 2023. "The Arabidopsis endosperm is a temperature-sensing tissue that implements seed thermoinhibition through phyB," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Giacomo Salvadori & Veronica Macaluso & Giulia Pellicci & Lorenzo Cupellini & Giovanni Granucci & Benedetta Mennucci, 2022. "Protein control of photochemistry and transient intermediates in phytochromes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Weiliang Mo & Junchuan Zhang & Li Zhang & Zhenming Yang & Liang Yang & Nan Yao & Yong Xiao & Tianhong Li & Yaxing Li & Guangmei Zhang & Mingdi Bian & Xinglin Du & Zecheng Zuo, 2022. "Arabidopsis cryptochrome 2 forms photobodies with TCP22 under blue light and regulates the circadian clock," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Yogev Burko & Björn Christopher Willige & Adam Seluzicki & Ondřej Novák & Karin Ljung & Joanne Chory, 2022. "PIF7 is a master regulator of thermomorphogenesis in shade," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Yuqing He & Yingjun Yu & Xiling Wang & Yumei Qin & Chen Su & Lei Wang, 2022. "Aschoff’s rule on circadian rhythms orchestrated by blue light sensor CRY2 and clock component PRR9," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Xu Huang & Rodolfo Zentella & Jeongmoo Park & Larry Reser & Dina L. Bai & Mark M. Ross & Jeffrey Shabanowitz & Donald F. Hunt & Tai-ping Sun, 2024. "Phosphorylation activates master growth regulator DELLA by promoting histone H2A binding at chromatin in Arabidopsis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47790-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.