IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12369-1.html
   My bibliography  Save this article

UVR8 disrupts stabilisation of PIF5 by COP1 to inhibit plant stem elongation in sunlight

Author

Listed:
  • Ashutosh Sharma

    (University of Bristol)

  • Bhavana Sharma

    (University of Bristol)

  • Scott Hayes

    (Centro Nacional de Biotecnología (CNB-CSIC))

  • Konstantin Kerner

    (University of Cologne)

  • Ute Hoecker

    (University of Cologne)

  • Gareth I. Jenkins

    (University of Glasgow)

  • Keara A. Franklin

    (University of Bristol)

Abstract

Alterations in light quality significantly affect plant growth and development. In canopy shade, phytochrome photoreceptors perceive reduced ratios of red to far-red light (R:FR) and initiate stem elongation to enable plants to overtop competitors. This shade avoidance response is achieved via the stabilisation and activation of PHYTOCHROME INTERACTING FACTORs (PIFs) which elevate auxin biosynthesis. UV-B inhibits shade avoidance by reducing the abundance and activity of PIFs, yet the molecular mechanisms controlling PIF abundance in UV-B are unknown. Here we show that the UV-B photoreceptor UVR8 promotes rapid PIF5 degradation via the ubiquitin-proteasome system in a response requiring the N terminus of PIF5. In planta interactions between UVR8 and PIF5 are not observed. We further demonstrate that PIF5 interacts with the E3 ligase COP1, promoting PIF5 stabilisation in light-grown plants. Binding of UVR8 to COP1 in UV-B disrupts this stabilisation, providing a mechanism to rapidly lower PIF5 abundance in sunlight.

Suggested Citation

  • Ashutosh Sharma & Bhavana Sharma & Scott Hayes & Konstantin Kerner & Ute Hoecker & Gareth I. Jenkins & Keara A. Franklin, 2019. "UVR8 disrupts stabilisation of PIF5 by COP1 to inhibit plant stem elongation in sunlight," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12369-1
    DOI: 10.1038/s41467-019-12369-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12369-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12369-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Liu & Giovanni Giuriani & Anezka Havlikova & Dezhi Li & Douglas J. Lamont & Susanne Neugart & Christos N. Velanis & Jan Petersen & Ute Hoecker & John M. Christie & Gareth I. Jenkins, 2024. "Phosphorylation of Arabidopsis UVR8 photoreceptor modulates protein interactions and responses to UV-B radiation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Ruth Jean Ae Kim & De Fan & Jiangman He & Keunhwa Kim & Juan Du & Meng Chen, 2024. "Photobody formation spatially segregates two opposing phytochrome B signaling actions of PIF5 degradation and stabilization," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12369-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.