IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4027.html
   My bibliography  Save this article

Light-regulated gene repositioning in Arabidopsis

Author

Listed:
  • Chun-Miao Feng

    (Duke University)

  • Yongjian Qiu

    (Duke University)

  • Elise K. Van Buskirk

    (Duke University)

  • Emily J. Yang

    (Duke University)

  • Meng Chen

    (Duke University)

Abstract

Plant genomes are extremely sensitive to, and can be developmentally reprogrammed by environmental light cues. Here using rolling-circle amplification of gene-specific circularizable oligonucleotides coupled with fluorescence in situ hybridization, we demonstrate that light triggers a rapid repositioning of the Arabidopsis light-inducible chlorophyll a/b-binding proteins (CAB) locus from the nuclear interior to the nuclear periphery during its transcriptional activation. CAB repositioning is mediated by the red/far-red photoreceptors phytochromes (PHYs) and is inhibited by repressors of PHY signalling, including COP1, DET1 and PIFs. CAB repositioning appears to be a separate regulatory step occurring before its full transcriptional activation. Moreover, the light-inducible loci RBCS, PC and GUN5 undergo similar repositioning behaviour during their transcriptional activation. Our study supports a light-dependent gene regulatory mechanism in which PHYs activate light-inducible loci by relocating them to the nuclear periphery; it also provides evidence for the biological importance of gene positioning in the plant kingdom.

Suggested Citation

  • Chun-Miao Feng & Yongjian Qiu & Elise K. Van Buskirk & Emily J. Yang & Meng Chen, 2014. "Light-regulated gene repositioning in Arabidopsis," Nature Communications, Nature, vol. 5(1), pages 1-9, May.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4027
    DOI: 10.1038/ncomms4027
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4027
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruth Jean Ae Kim & De Fan & Jiangman He & Keunhwa Kim & Juan Du & Meng Chen, 2024. "Photobody formation spatially segregates two opposing phytochrome B signaling actions of PIF5 degradation and stabilization," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Juan Du & Keunhwa Kim & Meng Chen, 2024. "Distinguishing individual photobodies using Oligopaints reveals thermo-sensitive and -insensitive phytochrome B condensation at distinct subnuclear locations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.