IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47830-3.html
   My bibliography  Save this article

Unraveling the mechanisms of PAMless DNA interrogation by SpRY-Cas9

Author

Listed:
  • Grace N. Hibshman

    (University of Texas at Austin
    Interdisciplinary Life Sciences Graduate Programs)

  • Jack P. K. Bravo

    (University of Texas at Austin
    Institute of Science and Technology Austria (ISTA))

  • Matthew M. Hooper

    (University of Texas at Austin
    Interdisciplinary Life Sciences Graduate Programs)

  • Tyler L. Dangerfield

    (University of Texas at Austin)

  • Hongshan Zhang

    (University of Texas at Austin
    University of Texas at Austin)

  • Ilya J. Finkelstein

    (University of Texas at Austin
    University of Texas at Austin)

  • Kenneth A. Johnson

    (University of Texas at Austin
    Interdisciplinary Life Sciences Graduate Programs)

  • David W. Taylor

    (University of Texas at Austin
    Interdisciplinary Life Sciences Graduate Programs
    University of Texas at Austin
    Dell Medical School)

Abstract

CRISPR-Cas9 is a powerful tool for genome editing, but the strict requirement for an NGG protospacer-adjacent motif (PAM) sequence immediately next to the DNA target limits the number of editable genes. Recently developed Cas9 variants have been engineered with relaxed PAM requirements, including SpG-Cas9 (SpG) and the nearly PAM-less SpRY-Cas9 (SpRY). However, the molecular mechanisms of how SpRY recognizes all potential PAM sequences remains unclear. Here, we combine structural and biochemical approaches to determine how SpRY interrogates DNA and recognizes target sites. Divergent PAM sequences can be accommodated through conformational flexibility within the PAM-interacting region, which facilitates tight binding to off-target DNA sequences. Nuclease activation occurs ~1000-fold slower than for Streptococcus pyogenes Cas9, enabling us to directly visualize multiple on-pathway intermediate states. Experiments with SpG position it as an intermediate enzyme between Cas9 and SpRY. Our findings shed light on the molecular mechanisms of PAMless genome editing.

Suggested Citation

  • Grace N. Hibshman & Jack P. K. Bravo & Matthew M. Hooper & Tyler L. Dangerfield & Hongshan Zhang & Ilya J. Finkelstein & Kenneth A. Johnson & David W. Taylor, 2024. "Unraveling the mechanisms of PAMless DNA interrogation by SpRY-Cas9," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47830-3
    DOI: 10.1038/s41467-024-47830-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47830-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47830-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carolin Anders & Ole Niewoehner & Alessia Duerst & Martin Jinek, 2014. "Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease," Nature, Nature, vol. 513(7519), pages 569-573, September.
    2. Johnny H. Hu & Shannon M. Miller & Maarten H. Geurts & Weixin Tang & Liwei Chen & Ning Sun & Christina M. Zeina & Xue Gao & Holly A. Rees & Zhi Lin & David R. Liu, 2018. "Evolved Cas9 variants with broad PAM compatibility and high DNA specificity," Nature, Nature, vol. 556(7699), pages 57-63, April.
    3. Mu-Sen Liu & Shanzhong Gong & Helen-Hong Yu & Kyungseok Jung & Kenneth A. Johnson & David W. Taylor, 2020. "Engineered CRISPR/Cas9 enzymes improve discrimination by slowing DNA cleavage to allow release of off-target DNA," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    4. Luciano A. Marraffini & Erik J. Sontheimer, 2010. "Self versus non-self discrimination during CRISPR RNA-directed immunity," Nature, Nature, vol. 463(7280), pages 568-571, January.
    5. Benjamin P. Kleinstiver & Michelle S. Prew & Shengdar Q. Tsai & Ved V. Topkar & Nhu T. Nguyen & Zongli Zheng & Andrew P. W. Gonzales & Zhuyun Li & Randall T. Peterson & Jing-Ruey Joanna Yeh & Martin J, 2015. "Engineered CRISPR-Cas9 nucleases with altered PAM specificities," Nature, Nature, vol. 523(7561), pages 481-485, July.
    6. Robert Heler & Poulami Samai & Joshua W. Modell & Catherine Weiner & Gregory W. Goldberg & David Bikard & Luciano A. Marraffini, 2015. "Cas9 specifies functional viral targets during CRISPR–Cas adaptation," Nature, Nature, vol. 519(7542), pages 199-202, March.
    7. Pascal D. Vos & Giulia Rossetti & Jessica L. Mantegna & Stefan J. Siira & Andrianto P. Gandadireja & Mitchell Bruce & Samuel A. Raven & Olga Khersonsky & Sarel J. Fleishman & Aleksandra Filipovska & O, 2022. "Computationally designed hyperactive Cas9 enzymes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sundaram Acharya & Asgar Hussain Ansari & Prosad Kumar Das & Seiichi Hirano & Meghali Aich & Riya Rauthan & Sudipta Mahato & Savitri Maddileti & Sajal Sarkar & Manoj Kumar & Rhythm Phutela & Sneha Gul, 2024. "PAM-flexible Engineered FnCas9 variants for robust and ultra-precise genome editing and diagnostics," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    2. Zongyi Yi & Xiaoxue Zhang & Xiaoxu Wei & Jiayi Li & Jiwu Ren & Xue Zhang & Yike Zhang & Huixian Tang & Xiwen Chang & Ying Yu & Wensheng Wei, 2024. "Programmable DNA pyrimidine base editing via engineered uracil-DNA glycosylase," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Wang & Yuxi Teng & Ruihua Zhang & Yifei Wu & Lei Lou & Yusong Zou & Michelle Li & Zhong-Ru Xie & Yajun Yan, 2021. "Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Eszter Tóth & Zsófia Rakvács & Zsuzsa Bartos & Sarah Laura Krausz & Ágnes Welker & Vanessza Laura Végi & Krisztina Huszár & Ervin Welker, 2023. "A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Sundaram Acharya & Asgar Hussain Ansari & Prosad Kumar Das & Seiichi Hirano & Meghali Aich & Riya Rauthan & Sudipta Mahato & Savitri Maddileti & Sajal Sarkar & Manoj Kumar & Rhythm Phutela & Sneha Gul, 2024. "PAM-flexible Engineered FnCas9 variants for robust and ultra-precise genome editing and diagnostics," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    4. Fang Liang & Yu Zhang & Lin Li & Yexin Yang & Ji-Feng Fei & Yanmei Liu & Wei Qin, 2022. "SpG and SpRY variants expand the CRISPR toolbox for genome editing in zebrafish," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Zhaohui Zhong & Guanqing Liu & Zhongjie Tang & Shuyue Xiang & Liang Yang & Lan Huang & Yao He & Tingting Fan & Shishi Liu & Xuelian Zheng & Tao Zhang & Yiping Qi & Jian Huang & Yong Zhang, 2023. "Efficient plant genome engineering using a probiotic sourced CRISPR-Cas9 system," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Giulia I. Corsi & Kunli Qu & Ferhat Alkan & Xiaoguang Pan & Yonglun Luo & Jan Gorodkin, 2022. "CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Dawn G. L. Thean & Hoi Yee Chu & John H. C. Fong & Becky K. C. Chan & Peng Zhou & Cynthia C. S. Kwok & Yee Man Chan & Silvia Y. L. Mak & Gigi C. G. Choi & Joshua W. K. Ho & Zongli Zheng & Alan S. L. W, 2022. "Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Lin Zhao & Sabrina R. T. Koseki & Rachel A. Silverstein & Nadia Amrani & Christina Peng & Christian Kramme & Natasha Savic & Martin Pacesa & Tomás C. Rodríguez & Teodora Stan & Emma Tysinger & Lauren , 2023. "PAM-flexible genome editing with an engineered chimeric Cas9," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Jeremy Vicencio & Carlos Sánchez-Bolaños & Ismael Moreno-Sánchez & David Brena & Charles E. Vejnar & Dmytro Kukhtar & Miguel Ruiz-López & Mariona Cots-Ponjoan & Alejandro Rubio & Natalia Rodrigo Meler, 2022. "Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Dalton T. Ham & Tyler S. Browne & Pooja N. Banglorewala & Tyler L. Wilson & Richard K. Michael & Gregory B. Gloor & David R. Edgell, 2023. "A generalizable Cas9/sgRNA prediction model using machine transfer learning with small high-quality datasets," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Annabel K. Sangree & Audrey L. Griffith & Zsofia M. Szegletes & Priyanka Roy & Peter C. DeWeirdt & Mudra Hegde & Abby V. McGee & Ruth E. Hanna & John G. Doench, 2022. "Benchmarking of SpCas9 variants enables deeper base editor screens of BRCA1 and BCL2," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Shiran Abadi & Winston X Yan & David Amar & Itay Mayrose, 2017. "A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-24, October.
    13. Maarten H. Geurts & Shashank Gandhi & Matteo G. Boretto & Ninouk Akkerman & Lucca L. M. Derks & Gijs Son & Martina Celotti & Sarina Harshuk-Shabso & Flavia Peci & Harry Begthel & Delilah Hendriks & Pa, 2023. "One-step generation of tumor models by base editor multiplexing in adult stem cell-derived organoids," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Jeong Moon & Changchun Liu, 2023. "Asymmetric CRISPR enabling cascade signal amplification for nucleic acid detection by competitive crRNA," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Margot Karlikow & Evan Amalfitano & Xiaolong Yang & Jennifer Doucet & Abigail Chapman & Peivand Sadat Mousavi & Paige Homme & Polina Sutyrina & Winston Chan & Sofia Lemak & Alexander F. Yakunin & Adam, 2023. "CRISPR-induced DNA reorganization for multiplexed nucleic acid detection," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Sarah Laura Krausz & Ervin Welker, 2022. "SuperFi-Cas9 exhibits remarkable fidelity but severely reduced activity yet works effectively with ABE8e," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Burcu Bestas & Sandra Wimberger & Dmitrii Degtev & Alexandra Madsen & Antje K. Rottner & Fredrik Karlsson & Sergey Naumenko & Megan Callahan & Julia Liz Touza & Margherita Francescatto & Carl Ivar Möl, 2023. "A Type II-B Cas9 nuclease with minimized off-targets and reduced chromosomal translocations in vivo," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Jonathan Yaacov Weinstein & Carlos Martí-Gómez & Rosalie Lipsh-Sokolik & Shlomo Yakir Hoch & Demian Liebermann & Reinat Nevo & Haim Weissman & Ekaterina Petrovich-Kopitman & David Margulies & Dmitry I, 2023. "Designed active-site library reveals thousands of functional GFP variants," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Koki Mise & Jianyin Long & Daniel L. Galvan & Zengchun Ye & Guizhen Fan & Rajesh Sharma & Irina I. Serysheva & Travis I. Moore & Collene R. Jeter & M. Anna Zal & Motoo Araki & Jun Wada & Paul T. Schum, 2024. "NDUFS4 regulates cristae remodeling in diabetic kidney disease," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    20. Kazuki Kato & Sae Okazaki & Soumya Kannan & Han Altae-Tran & F. Esra Demircioglu & Yukari Isayama & Junichiro Ishikawa & Masahiro Fukuda & Rhiannon K. Macrae & Tomohiro Nishizawa & Kira S. Makarova & , 2022. "Structure of the IscB–ωRNA ribonucleoprotein complex, the likely ancestor of CRISPR-Cas9," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47830-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.