IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47629-2.html
   My bibliography  Save this article

Catalytic role of in-situ formed C-N species for enhanced Li2CO3 decomposition

Author

Listed:
  • Fangli Zhang

    (Central South University
    The University of Adelaide
    University of Wollongong, Faculty of Engineering and Information Science)

  • Wenchao Zhang

    (Central South University
    Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution)

  • Jodie A. Yuwono

    (The University of Adelaide)

  • David Wexler

    (University of Wollongong, Faculty of Engineering and Information Science)

  • Yameng Fan

    (University of Wollongong, Faculty of Engineering and Information Science)

  • Jinshuo Zou

    (The University of Adelaide)

  • Gemeng Liang

    (The University of Adelaide)

  • Liang Sun

    (The University of Adelaide)

  • Zaiping Guo

    (The University of Adelaide)

Abstract

Sluggish kinetics of the CO2 reduction/evolution reactions lead to the accumulation of Li2CO3 residuals and thus possible catalyst deactivation, which hinders the long-term cycling stability of Li-CO2 batteries. Apart from catalyst design, constructing a fluorinated solid-electrolyte interphase is a conventional strategy to minimize parasitic reactions and prolong cycle life. However, the catalytic effects of solid-electrolyte interphase components have been overlooked and remain unclear. Herein, we systematically regulate the compositions of solid-electrolyte interphase via tuning electrolyte solvation structures, anion coordination, and binding free energy between Li ion and anion. The cells exhibit distinct improvement in cycling performance with increasing content of C-N species in solid-electrolyte interphase layers. The enhancement originates from a catalytic effect towards accelerating the Li2CO3 formation/decomposition kinetics. Theoretical analysis reveals that C-N species provide strong adsorption sites and promote charge transfer from interface to *CO22− during discharge, and from Li2CO3 to C-N species during charge, thereby building a bidirectional fast-reacting bridge for CO2 reduction/evolution reactions. This finding enables us to design a C-N rich solid-electrolyte interphase via dual-salt electrolytes, improving cycle life of Li-CO2 batteries to twice that using traditional electrolytes. Our work provides an insight into interfacial design by tuning of catalytic properties towards CO2 reduction/evolution reactions.

Suggested Citation

  • Fangli Zhang & Wenchao Zhang & Jodie A. Yuwono & David Wexler & Yameng Fan & Jinshuo Zou & Gemeng Liang & Liang Sun & Zaiping Guo, 2024. "Catalytic role of in-situ formed C-N species for enhanced Li2CO3 decomposition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47629-2
    DOI: 10.1038/s41467-024-47629-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47629-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47629-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhiao Yu & Paul E. Rudnicki & Zewen Zhang & Zhuojun Huang & Hasan Celik & Solomon T. Oyakhire & Yuelang Chen & Xian Kong & Sang Cheol Kim & Xin Xiao & Hansen Wang & Yu Zheng & Gaurav A. Kamat & Mun Se, 2022. "Rational solvent molecule tuning for high-performance lithium metal battery electrolytes," Nature Energy, Nature, vol. 7(1), pages 94-106, January.
    2. Joeri Rogelj & Daniel Huppmann & Volker Krey & Keywan Riahi & Leon Clarke & Matthew Gidden & Zebedee Nicholls & Malte Meinshausen, 2019. "A new scenario logic for the Paris Agreement long-term temperature goal," Nature, Nature, vol. 573(7774), pages 357-363, September.
    3. Yilong Wang & Xuhui Wang & Kai Wang & Frédéric Chevallier & Dan Zhu & Jinghui Lian & Yue He & Hanqin Tian & Junsheng Li & Jianxiao Zhu & Sujong Jeong & Josep G. Canadell, 2022. "The size of the land carbon sink in China," Nature, Nature, vol. 603(7901), pages 7-9, March.
    4. Jing Wang & Liang Feng & Paul I. Palmer & Yi Liu & Shuangxi Fang & Hartmut Bösch & Christopher W. O’Dell & Xiaoping Tang & Dongxu Yang & Lixin Liu & ChaoZong Xia, 2022. "Reply to: The size of the land carbon sink in China," Nature, Nature, vol. 603(7901), pages 10-12, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Hua & Rong Ran & Mingjuan Xie & Tingrou Li, 2024. "The capacity of land carbon sinks in poverty-stricken areas in China continues to increase in the process of eradicating extreme poverty: evidence from a study of poverty-stricken counties on the Qing," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17253-17280, July.
    2. Hui Wen & Yi Li & Zirong Li & Xiaoxue Cai & Fengxia Wang, 2022. "Spatial Differentiation of Carbon Budgets and Carbon Balance Zoning in China Based on the Land Use Perspective," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    3. Shenghang Wang & Shen Tan & Jiaming Xu, 2023. "Evaluation and Implication of the Policies towards China’s Carbon Neutrality," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    4. Mengting Dong & Zeyuan Liu & Xiufeng Ni & Zhulin Qi & Jinnan Wang & Qingyu Zhang, 2023. "Re-Evaluating the Value of Ecosystem Based on Carbon Benefit: A Case Study in Chengdu, China," Land, MDPI, vol. 12(8), pages 1-16, August.
    5. Lin Zhao & Meng-na Chen & Chuan-hao Yang & Run-ze Zhang & Qi-peng Zhang & Qian Wang, 2024. "Characteristics of spatial and temporal carbon emissions from different land uses in Shanxi section of the Yellow River, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20869-20884, August.
    6. Guo, Chaoyi & Zhou, Ziqiao & Liu, Xinyuan & Liu, Xiaorui & Meng, Jing & Dai, Hancheng, 2023. "The unintended dilemma of China's target-based carbon neutrality policy and provincial economic inequality," Energy Economics, Elsevier, vol. 126(C).
    7. Chaochao Du & Xiaoyong Bai & Yangbing Li & Qiu Tan & Cuiwei Zhao & Guangjie Luo & Luhua Wu & Fei Chen & Chaojun Li & Chen Ran & Xuling Luo & Huipeng Xi & Huan Chen & Sirui Zhang & Min Liu & Suhua Gong, 2022. "Inventory of China’s Net Biome Productivity since the 21st Century," Land, MDPI, vol. 11(8), pages 1-16, August.
    8. Mingjie Shi & Hongqi Wu & Pingan Jiang & Wenjiao Shi & Mo Zhang & Lina Zhang & Haoyu Zhang & Xin Fan & Zhuo Liu & Kai Zheng & Tong Dong & Muhammad Fahad Baqa, 2022. "Cropland Expansion Mitigates the Supply and Demand Deficit for Carbon Sequestration Service under Different Scenarios in the Future—The Case of Xinjiang," Agriculture, MDPI, vol. 12(8), pages 1-18, August.
    9. Zhang, Congyu & Chen, Wei-Hsin & Saravanakumar, Ayyadurai & Lin, Kun-Yi Andrew & Zhang, Ying, 2024. "Comparison of torrefaction and hydrothermal carbonization of high-moisture microalgal feedstock," Renewable Energy, Elsevier, vol. 225(C).
    10. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    11. Gorbach, O.G. & Kost, C. & Pickett, C., 2022. "Review of internal carbon pricing and the development of a decision process for the identification of promising Internal Pricing Methods for an Organisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    12. Jiawei Chen & Daoming Zhang & Lei Zhu & Mingzhu Liu & Tianle Zheng & Jie Xu & Jun Li & Fei Wang & Yonggang Wang & Xiaoli Dong & Yongyao Xia, 2024. "Hybridizing carbonate and ether at molecular scales for high-energy and high-safety lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Johannes Emmerling & Pietro Andreoni & Ioannis Charalampidis & Shouro Dasgupta & Francis Dennig & Simon Feindt & Dimitris Fragkiadakis & Panagiotis Fragkos & Shinichiro Fujimori & Martino Gilli & Caro, 2024. "A multi-model assessment of inequality and climate change," Nature Climate Change, Nature, vol. 14(12), pages 1254-1260, December.
    14. Wang, Wen-Qi & Li, Ming-Jia & Jiang, Rui & Hu, Yi-Huang & He, Ya-Ling, 2022. "Receiver with light-trapping nanostructured coating: A possible way to achieve high-efficiency solar thermal conversion for the next-generation concentrating solar power," Renewable Energy, Elsevier, vol. 185(C), pages 159-171.
    15. Xu, Meng & Zhang, Silu & Li, Panwei & Weng, Zhixiong & Xie, Yang & Lan, Yan, 2024. "Energy-related carbon emission reduction pathways in Northwest China towards carbon neutrality goal," Applied Energy, Elsevier, vol. 358(C).
    16. Pan, Xunzhang & Chen, Wenying & Zhou, Sheng & Wang, Lining & Dai, Jiaquan & Zhang, Qi & Zheng, Xinzhu & Wang, Hailin, 2020. "Implications of near-term mitigation on China's long-term energy transitions for aligning with the Paris goals," Energy Economics, Elsevier, vol. 90(C).
    17. Rong Tang & Jing Zhao & Yifan Liu & Xin Huang & Yanxu Zhang & Derong Zhou & Aijun Ding & Chris P. Nielsen & Haikun Wang, 2022. "Air quality and health co-benefits of China’s carbon dioxide emissions peaking before 2030," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Wu, Xiaomei & Mao, Yuanhao & Fan, Huifeng & Sultan, Sayd & Yu, Yunsong & Zhang, Zaoxiao, 2023. "Investigation on the performance of EDA-based blended solvents for electrochemically mediated CO2 capture," Applied Energy, Elsevier, vol. 349(C).
    19. Konstantinos Kappis & Joan Papavasiliou & George Avgouropoulos, 2021. "Methanol Reforming Processes for Fuel Cell Applications," Energies, MDPI, vol. 14(24), pages 1-30, December.
    20. Oliver Gregor Gorbach & Noha Saad Hussein & Jessica Thomsen, 2021. "Impact of Internal Carbon Prices on the Energy System of an Organisation’s Facilities in Germany, Japan and the United Kingdom Compared to Potential External Carbon Prices," Energies, MDPI, vol. 14(14), pages 1-41, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47629-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.