IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03160204.html
   My bibliography  Save this paper

Carbon dioxide emissions by the four largest world emitters: past performance and future scenarios for China, U.S.A., Europe and India

Author

Listed:
  • Sylvain Cail

    (Enerdata)

  • Patrick Criqui

    (GAEL - Laboratoire d'Economie Appliquée de Grenoble - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes)

Abstract

The purpose of this paper is to clarify the magnitude of the climate challenge we face globally and the role that the four largest greenhouse gas emitters – China, the U.S.A., the European Union and India – could potentially play, if they decided on a "deep collaboration". As stated in IPCC's 1.5°C report, the challenge is indeed to bring global emissions down to a level where they could be compensated for by anthropogenic carbon capture from the atmosphere. In this paper, we focus on the abatement of CO2 emissions as they represent two thirds of total GHG emissions3. By doing so, we recognise that confining our data to CO2 ignores other important gases (methane, nitrous oxides, fluorinated gases) and their emission dynamics. The paper proceeds along three stages. In section 2. "Where we stand, a global view", we recall the dynamics of atmospheric concentrations for two major GHGs, CO2 and methane. In section 3. "Looking back", we analyse in more detail the trends and bifurcations in the emissions for each of the four constituencies we are considering. Finally, in section 4. "Where we need to go", we analyse for the same constituencies representative scenarios that will allow us to contrast current developments with more constrained trajectories meeting the Paris commitments and, further on, net zero ambitions.

Suggested Citation

  • Sylvain Cail & Patrick Criqui, 2021. "Carbon dioxide emissions by the four largest world emitters: past performance and future scenarios for China, U.S.A., Europe and India," Post-Print hal-03160204, HAL.
  • Handle: RePEc:hal:journl:hal-03160204
    Note: View the original document on HAL open archive server: https://hal.science/hal-03160204v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03160204v1/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joeri Rogelj & Daniel Huppmann & Volker Krey & Keywan Riahi & Leon Clarke & Matthew Gidden & Zebedee Nicholls & Malte Meinshausen, 2019. "A new scenario logic for the Paris Agreement long-term temperature goal," Nature, Nature, vol. 573(7774), pages 357-363, September.
    2. Oecd, 2020. "Addressing societal challenges using transdisciplinary research," OECD Science, Technology and Industry Policy Papers 88, OECD Publishing.
    3. Grubler, Arnulf, 2012. "Energy transitions research: Insights and cautionary tales," Energy Policy, Elsevier, vol. 50(C), pages 8-16.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caragliu, Andrea & Graziano, Marcello, 2022. "The spatial dimension of energy transition policies, practices and technologies," Energy Policy, Elsevier, vol. 168(C).
    2. Lukáš Režný & Vladimír Bureš, 2019. "Energy Transition Scenarios and Their Economic Impacts in the Extended Neoclassical Model of Economic Growth," Sustainability, MDPI, vol. 11(13), pages 1-25, July.
    3. Sovacool, Benjamin K. & Martiskainen, Mari, 2020. "Hot transformations: Governing rapid and deep household heating transitions in China, Denmark, Finland and the United Kingdom," Energy Policy, Elsevier, vol. 139(C).
    4. Gorbach, O.G. & Kost, C. & Pickett, C., 2022. "Review of internal carbon pricing and the development of a decision process for the identification of promising Internal Pricing Methods for an Organisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Karoliina Isoaho & Jochen Markard, 2020. "The Politics of Technology Decline: Discursive Struggles over Coal Phase‐Out in the UK," Review of Policy Research, Policy Studies Organization, vol. 37(3), pages 342-368, May.
    6. Lee, Jungwoo & Yang, Jae-Suk, 2019. "Global energy transitions and political systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Fagerberg, Jan, 2018. "Mobilizing innovation for sustainability transitions: A comment on transformative innovation policy," Research Policy, Elsevier, vol. 47(9), pages 1568-1576.
    8. Roberts, Cameron & Greene, Jenna & Nemet, Gregory F., 2023. "Key enablers for carbon dioxide removal through the application of biochar to agricultural soils: Evidence from three historical analogues," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    9. Juliana Subtil Lacerda & Jeroen C. J. M. Van den Bergh, 2014. "International Diffusion of Renewable Energy Innovations: Lessons from the Lead Markets for Wind Power in China, Germany and USA," Energies, MDPI, vol. 7(12), pages 1-28, December.
    10. Maswabi, Mareledi Gina & Chun, Jungwoo & Chung, Suh-Yong, 2021. "Barriers to energy transition: A case of Botswana," Energy Policy, Elsevier, vol. 158(C).
    11. Robert K. Perrons & Adam B. Jaffe & Trinh Le, 2020. "Tracing the Linkages Between Scientific Research and Energy Innovations: A Comparison of Clean and Dirty Technologies," NBER Working Papers 27777, National Bureau of Economic Research, Inc.
    12. Nguyen, Trung Thanh & Nguyen, Thanh-Tung & Hoang, Viet-Ngu & Wilson, Clevo & Managi, Shunsuke, 2019. "Energy transition, poverty and inequality in Vietnam," Energy Policy, Elsevier, vol. 132(C), pages 536-548.
    13. Kemfert, Claudia & Präger, Fabian & Braunger, Isabell & Hoffart, Franziska M. & Brauers, Hanna, 2022. "The expansion of natural gas infrastructure puts energy transitions at risk," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 582-587.
    14. Roemer, Kelli F. & Haggerty, Julia H., 2021. "Coal communities and the U.S. energy transition: A policy corridors assessment," Energy Policy, Elsevier, vol. 151(C).
    15. Shidore, Sarang & Busby, Joshua W., 2019. "What explains India's embrace of solar? State-led energy transition in a developmental polity," Energy Policy, Elsevier, vol. 129(C), pages 1179-1189.
    16. Rong Tang & Jing Zhao & Yifan Liu & Xin Huang & Yanxu Zhang & Derong Zhou & Aijun Ding & Chris P. Nielsen & Haikun Wang, 2022. "Air quality and health co-benefits of China’s carbon dioxide emissions peaking before 2030," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Wang, Nan & Akimoto, Keigo & Nemet, Gregory F., 2021. "What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects," Energy Policy, Elsevier, vol. 158(C).
    18. Konstantinos Kappis & Joan Papavasiliou & George Avgouropoulos, 2021. "Methanol Reforming Processes for Fuel Cell Applications," Energies, MDPI, vol. 14(24), pages 1-30, December.
    19. Daniela Vîrjan & Claudia Rodica Popescu & Iuliana Pop & Delia Popescu, 2023. "Energy Transition and Sustainable Development at the Level of the European Union," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(63), pages 429-429, April.
    20. Benjamin K. Sovacool, 2016. "The history and politics of energy transitions: Comparing contested views and finding common ground," WIDER Working Paper Series wp-2016-81, World Institute for Development Economic Research (UNU-WIDER).

    More about this item

    Keywords

    Climate change; GHG Emissions; CO2 Emissions; China; India; Changement Climatique; Gaz à effet de serre GES; GES; Chine; Inde; USA; Europe;
    All these keywords.

    JEL classification:

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03160204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.