IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v11y2021i8d10.1038_s41558-021-01098-3.html
   My bibliography  Save this article

A sustainable development pathway for climate action within the UN 2030 Agenda

Author

Listed:
  • Bjoern Soergel

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Elmar Kriegler

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association
    Universität Potsdam)

  • Isabelle Weindl

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Sebastian Rauner

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Alois Dirnaichner

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Constantin Ruhe

    (Goethe-Universität
    German Development Institute—Deutsches Institut für Entwicklungspolitik (DIE))

  • Matthias Hofmann

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Nico Bauer

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Christoph Bertram

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Benjamin Leon Bodirsky

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Marian Leimbach

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Julia Leininger

    (German Development Institute—Deutsches Institut für Entwicklungspolitik (DIE))

  • Antoine Levesque

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Gunnar Luderer

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association
    Technische Universität Berlin)

  • Michaja Pehl

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Christopher Wingens

    (German Development Institute—Deutsches Institut für Entwicklungspolitik (DIE))

  • Lavinia Baumstark

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Felicitas Beier

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Jan Philipp Dietrich

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Florian Humpenöder

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Patrick Jeetze

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • David Klein

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Johannes Koch

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Robert Pietzcker

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Jessica Strefler

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Hermann Lotze-Campen

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association
    Humboldt-Universität zu Berlin)

  • Alexander Popp

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

Abstract

Ambitious climate policies, as well as economic development, education, technological progress and less resource-intensive lifestyles, are crucial elements for progress towards the UN Sustainable Development Goals (SDGs). However, using an integrated modelling framework covering 56 indicators or proxies across all 17 SDGs, we show that they are insufficient to reach the targets. An additional sustainable development package, including international climate finance, progressive redistribution of carbon pricing revenues, sufficient and healthy nutrition and improved access to modern energy, enables a more comprehensive sustainable development pathway. We quantify climate and SDG outcomes, showing that these interventions substantially boost progress towards many aspects of the UN Agenda 2030 and simultaneously facilitate reaching ambitious climate targets. Nonetheless, several important gaps remain; for example, with respect to the eradication of extreme poverty (180 million people remaining in 2030). These gaps can be closed by 2050 for many SDGs while also respecting the 1.5 °C target and several other planetary boundaries.

Suggested Citation

  • Bjoern Soergel & Elmar Kriegler & Isabelle Weindl & Sebastian Rauner & Alois Dirnaichner & Constantin Ruhe & Matthias Hofmann & Nico Bauer & Christoph Bertram & Benjamin Leon Bodirsky & Marian Leimbac, 2021. "A sustainable development pathway for climate action within the UN 2030 Agenda," Nature Climate Change, Nature, vol. 11(8), pages 656-664, August.
  • Handle: RePEc:nat:natcli:v:11:y:2021:i:8:d:10.1038_s41558-021-01098-3
    DOI: 10.1038/s41558-021-01098-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-021-01098-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-021-01098-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niklas H�hne & Michel den Elzen & Donovan Escalante, 2014. "Regional GHG reduction targets based on effort sharing: a comparison of studies," Climate Policy, Taylor & Francis Journals, vol. 14(1), pages 122-147, January.
    2. Joeri Rogelj & Daniel Huppmann & Volker Krey & Keywan Riahi & Leon Clarke & Matthew Gidden & Zebedee Nicholls & Malte Meinshausen, 2019. "A new scenario logic for the Paris Agreement long-term temperature goal," Nature, Nature, vol. 573(7774), pages 357-363, September.
    3. Klaus Hubacek & Giovanni Baiocchi & Kuishuang Feng & Anand Patwardhan, 2017. "Poverty eradication in a carbon constrained world," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    4. David Klein & Gunnar Luderer & Elmar Kriegler & Jessica Strefler & Nico Bauer & Marian Leimbach & Alexander Popp & Jan Dietrich & Florian Humpenöder & Hermann Lotze-Campen & Ottmar Edenhofer, 2014. "The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE," Climatic Change, Springer, vol. 123(3), pages 705-718, April.
    5. Marian Leimbach & Anastasis Giannousakis, 2019. "Burden sharing of climate change mitigation: global and regional challenges under shared socio-economic pathways," Climatic Change, Springer, vol. 155(2), pages 273-291, July.
    6. Nico Bauer & Christoph Bertram & Anselm Schultes & David Klein & Gunnar Luderer & Elmar Kriegler & Alexander Popp & Ottmar Edenhofer, 2020. "Quantification of an efficiency–sovereignty trade-off in climate policy," Nature, Nature, vol. 588(7837), pages 261-266, December.
    7. Marina Andrijevic & Jesus Crespo Cuaresma & Raya Muttarak & Carl-Friedrich Schleussner, 2020. "Governance in socioeconomic pathways and its role for future adaptive capacity," Nature Sustainability, Nature, vol. 3(1), pages 35-41, January.
    8. R. J. Scholes & R. Biggs, 2005. "A biodiversity intactness index," Nature, Nature, vol. 434(7029), pages 45-49, March.
    9. Sebastian Rauner & Nico Bauer & Alois Dirnaichner & Rita Van Dingenen & Chris Mutel & Gunnar Luderer, 2020. "Coal-exit health and environmental damage reductions outweigh economic impacts," Nature Climate Change, Nature, vol. 10(4), pages 308-312, April.
    10. Narasimha D. Rao & Jihoon Min & Alessio Mastrucci, 2019. "Energy requirements for decent living in India, Brazil and South Africa," Nature Energy, Nature, vol. 4(12), pages 1025-1032, December.
    11. Steckel, Jan Christoph & Brecha, Robert J. & Jakob, Michael & Strefler, Jessica & Luderer, Gunnar, 2013. "Development without energy? Assessing future scenarios of energy consumption in developing countries," Ecological Economics, Elsevier, vol. 90(C), pages 53-67.
    12. Alexander Popp & Florian Humpenöder & Isabelle Weindl & Benjamin Leon Bodirsky & Markus Bonsch & Hermann Lotze-Campen & Christoph Müller & Anne Biewald & Susanne Rolinski & Miodrag Stevanovic & Jan Ph, 2014. "Land-use protection for climate change mitigation," Nature Climate Change, Nature, vol. 4(12), pages 1095-1098, December.
    13. Nico Bauer & David Klein & Florian Humpenöder & Elmar Kriegler & Gunnar Luderer & Alexander Popp & Jessica Strefler, 2020. "Bio-energy and CO2 emission reductions: an integrated land-use and energy sector perspective," Climatic Change, Springer, vol. 163(3), pages 1675-1693, December.
    14. Abhijit Banerjee & Paul Niehaus & Tavneet Suri, 2019. "Universal Basic Income in the Developing World," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 959-983, August.
    15. Levesque, Antoine & Pietzcker, Robert C. & Baumstark, Lavinia & De Stercke, Simon & Grübler, Arnulf & Luderer, Gunnar, 2018. "How much energy will buildings consume in 2100? A global perspective within a scenario framework," Energy, Elsevier, vol. 148(C), pages 514-527.
    16. M. Hofmann & S. Mathesius & E. Kriegler & D. P. van Vuuren & H. J. Schellnhuber, 2019. "Strong time dependence of ocean acidification mitigation by atmospheric carbon dioxide removal," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    17. Levesque, Antoine & Pietzcker, Robert C. & Luderer, Gunnar, 2019. "Halving energy demand from buildings: The impact of low consumption practices," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 253-266.
    18. Massimo Tavoni & Elmar Kriegler & Keywan Riahi & Detlef P. van Vuuren & Tino Aboumahboub & Alex Bowen & Katherine Calvin & Emanuele Campiglio & Tom Kober & Jessica Jewell & Gunnar Luderer & Giacomo Ma, 2015. "Post-2020 climate agreements in the major economies assessed in the light of global models," Nature Climate Change, Nature, vol. 5(2), pages 119-126, February.
    19. Hugo Valin & Ronald D. Sands & Dominique van der Mensbrugghe & Gerald C. Nelson & Helal Ahammad & Elodie Blanc & Benjamin Bodirsky & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe, 2014. "The future of food demand: understanding differences in global economic models," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 51-67, January.
    20. Dietrich, Jan Philipp & Popp, Alexander & Lotze-Campen, Hermann, 2013. "Reducing the loss of information and gaining accuracy with clustering methods in a global land-use model," Ecological Modelling, Elsevier, vol. 263(C), pages 233-243.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koch, Johannes & Leimbach, Marian, 2023. "SSP economic growth projections: Major changes of key drivers in integrated assessment modelling," Ecological Economics, Elsevier, vol. 206(C).
    2. J. Doyne Farmer & John Geanakoplos & Matteo G. Richiardi & Miquel Montero & Josep Perelló & Jaume Masoliver, 2024. "Discounting the Distant Future: What Do Historical Bond Prices Imply about the Long-Term Discount Rate?," Mathematics, MDPI, vol. 12(5), pages 1-25, February.
    3. Kılkış, Şiir, 2022. "Urban emissions and land use efficiency scenarios towards effective climate mitigation in urban systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. van den Bergh, Jeroen, 2023. "Climate policy versus growth concerns: Suggestions for economic research and communication," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 107(C).
    5. Distefano, Tiziano & D’Alessandro, Simone, 2023. "Introduction of the carbon tax in Italy: Is there room for a quadruple-dividend effect?," Energy Economics, Elsevier, vol. 120(C).
    6. Gaupp, F. & Ruggeri Laderchi, C. & Lotze-Campen, H. & DeClerck, F. & Bodirsky, B. L. & Lowder, S. & Popp, A. & Kanbur, R. & Edenhofer, O. & Nugent, R. & Fanzo, J. & Dietz, S. & Nordhagen, S. & Fan, S., 2021. "Food system development pathways for healthy, nature-positive and inclusive food systems," LSE Research Online Documents on Economics 113421, London School of Economics and Political Science, LSE Library.
    7. Ana Raquel Nunes, 2023. "Mapping interactions between sustainable development and heatwave resilience," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12707-12733, November.
    8. Ahmed Dirie, Khadar & Maamor, Selamah & Alam, Md. Mahmudul, 2024. "Impacts of climate change in post-conflict Somalia: Is the 2030 Agenda for SDGs endangered?," World Development Perspectives, Elsevier, vol. 35(C).
    9. Maissa Khatib & Tanya Purwar & Rushabh Shah & Maricarmen Vizcaino & Luciano Castillo, 2024. "Empowerment and integration of refugee women: a transdisciplinary approach," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-18, December.
    10. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    11. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    12. Gaël Mariani & Fabien Moullec & Trisha B Atwood & Beverley Clarkson & Richard T Conant & Leanne Cullen-Unsworth & Bronson Griscom & Julian Gutt & Jennifer Howard & Dorte Krause- Jensen & Sara M Leavit, 2024. "Co-benefits and trade-offs between Natural Climate Solutions and Sustainable Development Goals," Post-Print hal-04756965, HAL.
    13. Zhu, Junpeng & Wu, Shaohui & Xu, Junbing, 2023. "Synergy between pollution control and carbon reduction: China's evidence," Energy Economics, Elsevier, vol. 119(C).
    14. Sharma, Rozi & Malaviya, Piyush, 2023. "Ecosystem services and climate action from a circular bioeconomy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    15. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vivien Fisch-Romito, 2021. "Embodied carbon dioxide emissions to provide high access levels to basic infrastructure around the world," Post-Print hal-03353919, HAL.
    2. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Shinichiro Fujimori & Tomoko Hasegawa & Volker Krey & Keywan Riahi & Christoph Bertram & Benjamin Leon Bodirsky & Valentina Bosetti & Jessica Callen & Jacques Després & Jonathan Doelman & Laurent Drou, 2019. "A multi-model assessment of food security implications of climate change mitigation," Nature Sustainability, Nature, vol. 2(5), pages 386-396, May.
    4. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Florian Humpenöder & Alexander Popp & Carl-Friedrich Schleussner & Anton Orlov & Michael Gregory Windisch & Inga Menke & Julia Pongratz & Felix Havermann & Wim Thiery & Fei Luo & Patrick v. Jeetze & J, 2022. "Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Searchinger, Timothy D. & Beringer, Tim & Strong, Asa, 2017. "Does the world have low-carbon bioenergy potential from the dedicated use of land?," Energy Policy, Elsevier, vol. 110(C), pages 434-446.
    7. Kipling, Richard P. & Bannink, André & Bellocchi, Gianni & Dalgaard, Tommy & Fox, Naomi J. & Hutchings, Nicholas J. & Kjeldsen, Chris & Lacetera, Nicola & Sinabell, Franz & Topp, Cairistiona F.E. & va, 2016. "Modeling European ruminant production systems: Facing the challenges of climate change," Agricultural Systems, Elsevier, vol. 147(C), pages 24-37.
    8. Clara Camarasa & Érika Mata & Juan Pablo Jiménez Navarro & Janet Reyna & Paula Bezerra & Gerd Brantes Angelkorte & Wei Feng & Faidra Filippidou & Sebastian Forthuber & Chioke Harris & Nina Holck Sandb, 2022. "A global comparison of building decarbonization scenarios by 2050 towards 1.5–2 °C targets," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Li, Mengyu & Duan, Maosheng, 2020. "Efforts-sharing to achieve the Paris goals: Ratcheting-up of NDCs and taking full advantage of international carbon market," Applied Energy, Elsevier, vol. 280(C).
    10. Benedikt Bruckner & Klaus Hubacek & Yuli Shan & Honglin Zhong & Kuishuang Feng, 2022. "Impacts of poverty alleviation on national and global carbon emissions," Nature Sustainability, Nature, vol. 5(4), pages 311-320, April.
    11. Pauliuk, Stefan, 2024. "Decent living standards, prosperity, and excessive consumption in the Lorenz curve," Ecological Economics, Elsevier, vol. 220(C).
    12. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    13. Blimpo, Moussa P. & Dato, Prudence & Mukhaya, Brian & Odarno, Lily, 2024. "Climate change and economic development in Africa: A systematic review of energy transition modeling research," Energy Policy, Elsevier, vol. 187(C).
    14. Stern, Nicholas & Lankes, Hans Peter & Macquarie, Rob & Soubeyran, Éléonore, 2024. "The relationship between climate action and poverty reduction," LSE Research Online Documents on Economics 121231, London School of Economics and Political Science, LSE Library.
    15. Andreas Andreou & Panagiotis Fragkos & Theofano Fotiou & Faidra Filippidou, 2022. "Assessing Lifestyle Transformations and Their Systemic Effects in Energy-System and Integrated Assessment Models: A Review of Current Methods and Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    16. Alessio Mastrucci & Edward Byers & Shonali Pachauri & Narasimha Rao & Bas Ruijven, 2022. "Cooling access and energy requirements for adaptation to heat stress in megacities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-16, December.
    17. Johannes Emmerling & Pietro Andreoni & Ioannis Charalampidis & Shouro Dasgupta & Francis Dennig & Simon Feindt & Dimitris Fragkiadakis & Panagiotis Fragkos & Shinichiro Fujimori & Martino Gilli & Caro, 2024. "A multi-model assessment of inequality and climate change," Nature Climate Change, Nature, vol. 14(12), pages 1254-1260, December.
    18. Jingwen Huo & Jing Meng & Heran Zheng & Priti Parikh & Dabo Guan, 2023. "Achieving decent living standards in emerging economies challenges national mitigation goals for CO2 emissions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Sacchi, R. & Terlouw, T. & Siala, K. & Dirnaichner, A. & Bauer, C. & Cox, B. & Mutel, C. & Daioglou, V. & Luderer, G., 2022. "PRospective EnvironMental Impact asSEment (premise): A streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Edelenbosch, OY & Rovelli, D & Levesque, A & Marangoni, G & Tavoni, M, 2021. "Long term, cross-country effects of buildings insulation policies," Technological Forecasting and Social Change, Elsevier, vol. 170(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:11:y:2021:i:8:d:10.1038_s41558-021-01098-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.