IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05343-w.html
   My bibliography  Save this article

Room-temperature pyro-catalytic hydrogen generation of 2D few-layer black phosphorene under cold-hot alternation

Author

Listed:
  • Huilin You

    (Zhejiang Normal University)

  • Yanmin Jia

    (Zhejiang Normal University)

  • Zheng Wu

    (Zhejiang Normal University)

  • Feifei Wang

    (Shanghai Normal University)

  • Haitao Huang

    (The Hong Kong Polytechnic University)

  • Yu Wang

    (Nanchang University)

Abstract

Many 2D few-layer materials show piezoelectric or pyroelectric effects due to the loss-of-inversion symmetry induced by broken structure, although they are not piezoelectric or pyroelectric in the bulk. In this work, we find that the puckered graphene-like 2D few-layer black phosphorene is pyroelectric and shows a pyro-catalytic effect, where the pyroelectric charges generated under ambient cold–hot alternation are utilized for hydrogen evolution and dye molecule decomposition. Under thermal cycling between 15 °C and 65 °C, the 2D few-layer black phosphorene shows a direct hydrogen generation of about 540 μmol per gram of catalyst after 24 thermal cycles and about 99% decomposition of Rhodamine B dye after 5 thermal cycles. This work opens a door for the pyro-catalytic energy harvesting from the cold–hot alternations by a class of 2D few-layer materials.

Suggested Citation

  • Huilin You & Yanmin Jia & Zheng Wu & Feifei Wang & Haitao Huang & Yu Wang, 2018. "Room-temperature pyro-catalytic hydrogen generation of 2D few-layer black phosphorene under cold-hot alternation," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05343-w
    DOI: 10.1038/s41467-018-05343-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05343-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05343-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huilin You & Siqi Li & Yulong Fan & Xuyun Guo & Zezhou Lin & Ran Ding & Xin Cheng & Hao Zhang & Tsz Woon Benedict Lo & Jianhua Hao & Ye Zhu & Hwa-Yaw Tam & Dangyuan Lei & Chi-Hang Lam & Haitao Huang, 2022. "Accelerated pyro-catalytic hydrogen production enabled by plasmonic local heating of Au on pyroelectric BaTiO3 nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Malkeshkumar Patel & Hyeong-Ho Park & Priyanka Bhatnagar & Naveen Kumar & Junsik Lee & Joondong Kim, 2024. "Transparent integrated pyroelectric-photovoltaic structure for photo-thermo hybrid power generation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Xiaoyang Pan & Xuhui Yang & Maoqing Yu & Xiaoxiao Lu & Hao Kang & Min-Quan Yang & Qingrong Qian & Xiaojing Zhao & Shijing Liang & Zhenfeng Bian, 2023. "2D MXenes polar catalysts for multi-renewable energy harvesting applications," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05343-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.