IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-14066-5.html
   My bibliography  Save this article

Edible unclonable functions

Author

Listed:
  • Jung Woo Leem

    (Purdue University)

  • Min Seok Kim

    (Gwangju Institute of Science Technology)

  • Seung Ho Choi

    (Yonsei University)

  • Seong-Ryul Kim

    (National Institute of Agricultural Sciences, Rural Development Administration)

  • Seong-Wan Kim

    (National Institute of Agricultural Sciences, Rural Development Administration)

  • Young Min Song

    (Gwangju Institute of Science Technology)

  • Robert J. Young

    (Lancaster University)

  • Young L. Kim

    (Purdue University
    Purdue University Center for Cancer Research
    Regenstrief Center for Healthcare Engineering
    Purdue Quantum Science and Engineering Institute)

Abstract

Counterfeit medicines are a fundamental security problem. Counterfeiting medication poses a tremendous threat to patient safety, public health, and the economy in developed and less developed countries. Current solutions are often vulnerable due to the limited security levels. We propose that the highest protection against counterfeit medicines would be a combination of a physically unclonable function (PUF) with on-dose authentication. A PUF can provide a digital fingerprint with multiple pairs of input challenges and output responses. On-dose authentication can verify every individual pill without removing the identification tag. Here, we report on-dose PUFs that can be directly attached onto the surface of medicines, be swallowed, and digested. Fluorescent proteins and silk proteins serve as edible photonic biomaterials and the photoluminescent properties provide parametric support of challenge-response pairs. Such edible cryptographic primitives can play an important role in pharmaceutical anti-counterfeiting and other security applications requiring immediate destruction or vanishing features.

Suggested Citation

  • Jung Woo Leem & Min Seok Kim & Seung Ho Choi & Seong-Ryul Kim & Seong-Wan Kim & Young Min Song & Robert J. Young & Young L. Kim, 2020. "Edible unclonable functions," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14066-5
    DOI: 10.1038/s41467-019-14066-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-14066-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-14066-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kun Wang & Jianwei Shi & Wenxuan Lai & Qiang He & Jun Xu & Zhenyi Ni & Xinfeng Liu & Xiaodong Pi & Deren Yang, 2024. "All-silicon multidimensionally-encoded optical physical unclonable functions for integrated circuit anti-counterfeiting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Minye Yang & Liang Zhu & Qi Zhong & Ramy El-Ganainy & Pai-Yen Chen, 2023. "Spectral sensitivity near exceptional points as a resource for hardware encryption," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Ningfei Sun & Ziyu Chen & Yanke Wang & Shu Wang & Yong Xie & Qian Liu, 2023. "Random fractal-enabled physical unclonable functions with dynamic AI authentication," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Srinivas Gandla & Jinsik Yoon & Cheol‑Woong Yang & HyungJune Lee & Wook Park & Sunkook Kim, 2024. "Random laser ablated tags for anticounterfeiting purposes and towards physically unclonable functions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14066-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.