IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47478-z.html
   My bibliography  Save this article

Photonic-electronic integrated circuit-based coherent LiDAR engine

Author

Listed:
  • Anton Lukashchuk

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • Halil Kerim Yildirim

    (Advanced Quantum Architecture Laboratory (AQUA), Swiss Federal Institute of Technology Lausanne (EPFL))

  • Andrea Bancora

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • Grigory Lihachev

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • Yang Liu

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • Zheru Qiu

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • Xinru Ji

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • Andrey Voloshin

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • Sunil A. Bhave

    (Purdue University)

  • Edoardo Charbon

    (Advanced Quantum Architecture Laboratory (AQUA), Swiss Federal Institute of Technology Lausanne (EPFL))

  • Tobias J. Kippenberg

    (Swiss Federal Institute of Technology Lausanne (EPFL))

Abstract

Chip-scale integration is a key enabler for the deployment of photonic technologies. Coherent laser ranging or FMCW LiDAR, a perception technology that benefits from instantaneous velocity and distance detection, eye-safe operation, long-range, and immunity to interference. However, wafer-scale integration of these systems has been challenged by stringent requirements on laser coherence, frequency agility, and the necessity for optical amplifiers. Here, we demonstrate a photonic-electronic LiDAR source composed of a micro-electronic-based high-voltage arbitrary waveform generator, a hybrid photonic circuit-based tunable Vernier laser with piezoelectric actuators, and an erbium-doped waveguide amplifier. Importantly, all systems are realized in a wafer-scale manufacturing-compatible process comprising III-V semiconductors, silicon nitride photonic integrated circuits, and 130-nm SiGe bipolar complementary metal-oxide-semiconductor (CMOS) technology. We conducted ranging experiments at a 10-meter distance with a precision level of 10 cm and a 50 kHz acquisition rate. The laser source is turnkey and linearization-free, and it can be seamlessly integrated with existing focal plane and optical phased array LiDAR approaches.

Suggested Citation

  • Anton Lukashchuk & Halil Kerim Yildirim & Andrea Bancora & Grigory Lihachev & Yang Liu & Zheru Qiu & Xinru Ji & Andrey Voloshin & Sunil A. Bhave & Edoardo Charbon & Tobias J. Kippenberg, 2024. "Photonic-electronic integrated circuit-based coherent LiDAR engine," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47478-z
    DOI: 10.1038/s41467-024-47478-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47478-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47478-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zihan Li & Rui Ning Wang & Grigory Lihachev & Junyin Zhang & Zelin Tan & Mikhail Churaev & Nikolai Kuznetsov & Anat Siddharth & Mohammad J. Bereyhi & Johann Riemensberger & Tobias J. Kippenberg, 2023. "High density lithium niobate photonic integrated circuits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Christopher Rogers & Alexander Y. Piggott & David J. Thomson & Robert F. Wiser & Ion E. Opris & Steven A. Fortune & Andrew J. Compston & Alexander Gondarenko & Fanfan Meng & Xia Chen & Graham T. Reed , 2021. "A universal 3D imaging sensor on a silicon photonics platform," Nature, Nature, vol. 590(7845), pages 256-261, February.
    3. Grigory Lihachev & Johann Riemensberger & Wenle Weng & Junqiu Liu & Hao Tian & Anat Siddharth & Viacheslav Snigirev & Vladimir Shadymov & Andrey Voloshin & Rui Ning Wang & Jijun He & Sunil A. Bhave & , 2022. "Low-noise frequency-agile photonic integrated lasers for coherent ranging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Viacheslav Snigirev & Annina Riedhauser & Grigory Lihachev & Mikhail Churaev & Johann Riemensberger & Rui Ning Wang & Anat Siddharth & Guanhao Huang & Charles Möhl & Youri Popoff & Ute Drechsler & Dan, 2023. "Ultrafast tunable lasers using lithium niobate integrated photonics," Nature, Nature, vol. 615(7952), pages 411-417, March.
    5. Mingxiao Li & Lin Chang & Lue Wu & Jeremy Staffa & Jingwei Ling & Usman A. Javid & Shixin Xue & Yang He & Raymond Lopez-rios & Theodore J. Morin & Heming Wang & Boqiang Shen & Siwei Zeng & Lin Zhu & K, 2022. "Integrated Pockels laser," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zihan Li & Rui Ning Wang & Grigory Lihachev & Junyin Zhang & Zelin Tan & Mikhail Churaev & Nikolai Kuznetsov & Anat Siddharth & Mohammad J. Bereyhi & Johann Riemensberger & Tobias J. Kippenberg, 2023. "High density lithium niobate photonic integrated circuits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Sudip Shekhar & Wim Bogaerts & Lukas Chrostowski & John E. Bowers & Michael Hochberg & Richard Soref & Bhavin J. Shastri, 2024. "Roadmapping the next generation of silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Mark Dong & Julia M. Boyle & Kevin J. Palm & Matthew Zimmermann & Alex Witte & Andrew J. Leenheer & Daniel Dominguez & Gerald Gilbert & Matt Eichenfield & Dirk Englund, 2023. "Synchronous micromechanically resonant programmable photonic circuits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Xiaoli Jing & Ruizhe Zhao & Xin Li & Qiang Jiang & Chengzhi Li & Guangzhou Geng & Junjie Li & Yongtian Wang & Lingling Huang, 2022. "Single-shot 3D imaging with point cloud projection based on metadevice," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Grigory Lihachev & Johann Riemensberger & Wenle Weng & Junqiu Liu & Hao Tian & Anat Siddharth & Viacheslav Snigirev & Vladimir Shadymov & Andrey Voloshin & Rui Ning Wang & Jijun He & Sunil A. Bhave & , 2022. "Low-noise frequency-agile photonic integrated lasers for coherent ranging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Jingwei Ling & Zhengdong Gao & Shixin Xue & Qili Hu & Mingxiao Li & Kaibo Zhang & Usman A. Javid & Raymond Lopez-Rios & Jeremy Staffa & Qiang Lin, 2024. "Electrically empowered microcomb laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Fatimah, Alfariany & Britteon, Philip & Turner, Alex J & Anselmi, Laura & Gillibrand, Stephanie & Wilson, Paul & Sutton, Matt & Lau, Yiu-Shing, 2023. "Evaluating whole system reforms: A structured approach for selecting multiple outcomes," Health Policy, Elsevier, vol. 138(C).
    8. Phillip S. Blakey & Han Liu & Georgios Papangelakis & Yutian Zhang & Zacharie M. Léger & Meng Lon Iu & Amr S. Helmy, 2022. "Quantum and non-local effects offer over 40 dB noise resilience advantage towards quantum lidar," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Xiaohua Feng & Yayao Ma & Liang Gao, 2022. "Compact light field photography towards versatile three-dimensional vision," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Dmitry Kazakov & Theodore P. Letsou & Maximilian Beiser & Yiyang Zhi & Nikola Opačak & Marco Piccardo & Benedikt Schwarz & Federico Capasso, 2024. "Active mid-infrared ring resonators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Hubert S. Stokowski & Timothy P. McKenna & Taewon Park & Alexander Y. Hwang & Devin J. Dean & Oguz Tolga Celik & Vahid Ansari & Martin M. Fejer & Amir H. Safavi-Naeini, 2023. "Integrated quantum optical phase sensor in thin film lithium niobate," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Anton Lukashchuk & Johann Riemensberger & Maxim Karpov & Junqiu Liu & Tobias J. Kippenberg, 2022. "Dual chirped microcomb based parallel ranging at megapixel-line rates," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Dawoon Jeong & Hansol Jang & Min Uk Jung & Taeho Jeong & Hyunsoo Kim & Sanghyeok Yang & Janghyeon Lee & Chang-Seok Kim, 2024. "Spatio-spectral 4D coherent ranging using a flutter-wavelength-swept laser," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Renato Juliano Martins & Emil Marinov & M. Aziz Ben Youssef & Christina Kyrou & Mathilde Joubert & Constance Colmagro & Valentin Gâté & Colette Turbil & Pierre-Marie Coulon & Daniel Turover & Samira K, 2022. "Metasurface-enhanced light detection and ranging technology," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Zicheng Shen & Feng Zhao & Chunqi Jin & Shuai Wang & Liangcai Cao & Yuanmu Yang, 2023. "Monocular metasurface camera for passive single-shot 4D imaging," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47478-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.