IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47392-4.html
   My bibliography  Save this article

Unveiling unique microbial nitrogen cycling and nitrification driver in coastal Antarctica

Author

Listed:
  • Ping Han

    (East China Normal University
    East China Normal University
    East China Normal University)

  • Xiufeng Tang

    (East China Normal University)

  • Hanna Koch

    (Radboud University
    Bioresources Unit, AIT Austrian Institute of Technology GmbH)

  • Xiyang Dong

    (Third Institute of Oceanography, Ministry of Natural Resources
    State Key Laboratory Breeding Base of Marine Genetic Resources
    Fujian Key Laboratory of Marine Genetic Resources)

  • Lijun Hou

    (East China Normal University
    East China Normal University)

  • Danhe Wang

    (East China Normal University)

  • Qian Zhao

    (East China Normal University)

  • Zhe Li

    (East China Normal University)

  • Min Liu

    (East China Normal University
    East China Normal University)

  • Sebastian Lücker

    (Radboud University)

  • Guitao Shi

    (East China Normal University
    East China Normal University)

Abstract

Largely removed from anthropogenic delivery of nitrogen (N), Antarctica has notably low levels of nitrogen. Though our understanding of biological sources of ammonia have been elucidated, the microbial drivers of nitrate (NO3−) cycling in coastal Antarctica remains poorly understood. Here, we explore microbial N cycling in coastal Antarctica, unraveling the biological origin of NO3− via oxygen isotopes in soil and lake sediment, and through the reconstruction of 1968 metagenome-assembled genomes from 29 microbial phyla. Our analysis reveals the metabolic potential for microbial N2 fixation, nitrification, and denitrification, but not for anaerobic ammonium oxidation, signifying a unique microbial N-cycling dynamic. We identify the predominance of complete ammonia oxidizing (comammox) Nitrospira, capable of performing the entire nitrification process. Their adaptive strategies to the Antarctic environment likely include synthesis of trehalose for cold stress, high substrate affinity for resource utilization, and alternate metabolic pathways for nutrient-scarce conditions. We confirm the significant role of comammox Nitrospira in the autotrophic, nitrification process via 13C-DNA-based stable isotope probing. This research highlights the crucial contribution of nitrification to the N budget in coastal Antarctica, identifying comammox Nitrospira clade B as a nitrification driver.

Suggested Citation

  • Ping Han & Xiufeng Tang & Hanna Koch & Xiyang Dong & Lijun Hou & Danhe Wang & Qian Zhao & Zhe Li & Min Liu & Sebastian Lücker & Guitao Shi, 2024. "Unveiling unique microbial nitrogen cycling and nitrification driver in coastal Antarctica," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47392-4
    DOI: 10.1038/s41467-024-47392-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47392-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47392-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Leininger & T. Urich & M. Schloter & L. Schwark & J. Qi & G. W. Nicol & J. I. Prosser & S. C. Schuster & C. Schleper, 2006. "Archaea predominate among ammonia-oxidizing prokaryotes in soils," Nature, Nature, vol. 442(7104), pages 806-809, August.
    2. Marc Strous & John A. Fuerst & Evelien H. M. Kramer & Susanne Logemann & Gerard Muyzer & Katinka T. van de Pas-Schoonen & Richard Webb & J. Gijs Kuenen & Mike S. M. Jetten, 1999. "Missing lithotroph identified as new planctomycete," Nature, Nature, vol. 400(6743), pages 446-449, July.
    3. Ben J. Woodcroft & Caitlin M. Singleton & Joel A. Boyd & Paul N. Evans & Joanne B. Emerson & Ahmed A. F. Zayed & Robert D. Hoelzle & Timothy O. Lamberton & Carmody K. McCalley & Suzanne B. Hodgkins & , 2018. "Genome-centric view of carbon processing in thawing permafrost," Nature, Nature, vol. 560(7716), pages 49-54, August.
    4. K. Dimitri Kits & Man-Young Jung & Julia Vierheilig & Petra Pjevac & Christopher J. Sedlacek & Shurong Liu & Craig Herbold & Lisa Y. Stein & Andreas Richter & Holger Wissel & Nicolas Brüggemann & Mich, 2019. "Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    5. Mahlon C. Kennicutt & Steven L. Chown & John J. Cassano & Daniela Liggett & Rob Massom & Lloyd S. Peck & Steve R. Rintoul & John W. V. Storey & David G. Vaughan & Terry J. Wilson & William J. Sutherla, 2014. "Polar research: Six priorities for Antarctic science," Nature, Nature, vol. 512(7512), pages 23-25, August.
    6. Martin Könneke & Anne E. Bernhard & José R. de la Torre & Christopher B. Walker & John B. Waterbury & David A. Stahl, 2005. "Isolation of an autotrophic ammonia-oxidizing marine archaeon," Nature, Nature, vol. 437(7058), pages 543-546, September.
    7. Mukan Ji & Chris Greening & Inka Vanwonterghem & Carlo R. Carere & Sean K. Bay & Jason A. Steen & Kate Montgomery & Thomas Lines & John Beardall & Josie van Dorst & Ian Snape & Matthew B. Stott & Phil, 2017. "Atmospheric trace gases support primary production in Antarctic desert surface soil," Nature, Nature, vol. 552(7685), pages 400-403, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Pedro Rodríguez-López & Chihua Wu & Tatiana A. Vishnivetskaya & Julian B. Murton & Wenqiang Tang & Chao Ma, 2022. "Permafrost in the Cretaceous supergreenhouse," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Kehinde Abraham Odelade & Olubukola Oluranti Babalola, 2019. "Bacteria, Fungi and Archaea Domains in Rhizospheric Soil and Their Effects in Enhancing Agricultural Productivity," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
    3. Fo-Ting Shen & Shih-Han Lin, 2021. "Shifts in Bacterial Community Associated with Green Manure Soybean Intercropping and Edaphic Properties in a Tea Plantation," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    4. Maximiliano Ortiz, 2024. "All-inclusive nitrifiers in Antarctic soils," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    5. X.X. Dong & L.L. Zhang & Z.J. Wu & H.W. Zhang & P. Gong, 2013. "The response of nitrifier, N-fixer and denitrifier gene copy numbers to the nitrification inhibitor 3,4-dimethylpyrazole phosphate," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 59(9), pages 398-403.
    6. Stefan Dyksma & Michael Pester, 2023. "Oxygen respiration and polysaccharide degradation by a sulfate-reducing acidobacterium," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Xingjia He & Sen Li & Fengzhi Wu, 2021. "Responses of Ammonia-Oxidizing Microorganisms to Intercropping Systems in Different Seasons," Agriculture, MDPI, vol. 11(3), pages 1-17, February.
    8. Mohammad Bahram & Mikk Espenberg & Jaan Pärn & Laura Lehtovirta-Morley & Sten Anslan & Kuno Kasak & Urmas Kõljalg & Jaan Liira & Martin Maddison & Mari Moora & Ülo Niinemets & Maarja Öpik & Meelis Pär, 2022. "Structure and function of the soil microbiome underlying N2O emissions from global wetlands," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Pok Man Leung & Rhys Grinter & Eve Tudor-Matthew & James P. Lingford & Luis Jimenez & Han-Chung Lee & Michael Milton & Iresha Hanchapola & Erwin Tanuwidjaya & Ashleigh Kropp & Hanna A. Peach & Carlo R, 2024. "Trace gas oxidation sustains energy needs of a thermophilic archaeon at suboptimal temperatures," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. M. S. Clark & J. I. Hoffman & L. S. Peck & L. Bargelloni & D. Gande & C. Havermans & B. Meyer & T. Patarnello & T. Phillips & K. R. Stoof-Leichsenring & D. L. J. Vendrami & A. Beck & G. Collins & M. W, 2023. "Multi-omics for studying and understanding polar life," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. M. E. Marushchak & J. Kerttula & K. Diáková & A. Faguet & J. Gil & G. Grosse & C. Knoblauch & N. Lashchinskiy & P. J. Martikainen & A. Morgenstern & M. Nykamb & J. G. Ronkainen & H. M. P. Siljanen & L, 2021. "Thawing Yedoma permafrost is a neglected nitrous oxide source," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    12. Jianfeng Ning & Yuji Arai & Jian Shen & Ronghui Wang & Shaoying Ai, 2021. "Effects of Phosphorus on Nitrification Process in a Fertile Soil Amended with Urea," Agriculture, MDPI, vol. 11(6), pages 1-12, June.
    13. Jie Zhou & Yanling Zheng & Lijun Hou & Zhirui An & Feiyang Chen & Bolin Liu & Li Wu & Lin Qi & Hongpo Dong & Ping Han & Guoyu Yin & Xia Liang & Yi Yang & Xiaofei Li & Dengzhou Gao & Ye Li & Zhanfei Li, 2023. "Effects of acidification on nitrification and associated nitrous oxide emission in estuarine and coastal waters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. R. Michael Lehman & Cynthia A. Cambardella & Diane E. Stott & Veronica Acosta-Martinez & Daniel K. Manter & Jeffrey S. Buyer & Jude E. Maul & Jeffrey L. Smith & Harold P. Collins & Jonathan J. Halvors, 2015. "Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation," Sustainability, MDPI, vol. 7(1), pages 1-40, January.
    15. Tsung-Yueh Tsai & Wen-Yun Chen, 2022. "The Effect of Up-Flow Rate on the Nitrogen Treatment Efficiency and Sludge Characteristics of ANAMMOX Process with Up-Flow Anaerobic Sludge Bed Reactor," Sustainability, MDPI, vol. 14(24), pages 1-10, December.
    16. Lauren F. Messer & David G. Bourne & Steven J. Robbins & Megan Clay & Sara C. Bell & Simon J. McIlroy & Gene W. Tyson, 2024. "A genome-centric view of the role of the Acropora kenti microbiome in coral health and resilience," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Lin, L. & Norman, J.S. & Barrett, J.E., 2017. "Ammonia-uptake kinetics and domain-level contributions of bacteria and archaea to nitrification in temperate forest soils," Ecological Modelling, Elsevier, vol. 362(C), pages 111-119.
    18. Aixia Xu & Lingling Li & Junhong Xie & Subramaniam Gopalakrishnan & Renzhi Zhang & Zhuzhu Luo & Liqun Cai & Chang Liu & Linlin Wang & Sumera Anwar & Yuji Jiang, 2022. "Changes in Ammonia-Oxidizing Archaea and Bacterial Communities and Soil Nitrogen Dynamics in Response to Long-Term Nitrogen Fertilization," IJERPH, MDPI, vol. 19(5), pages 1-18, February.
    19. Carla L. Abán & Giovanni Larama & Antonella Ducci & Jorgelina Huidobro & Michel Abanto & Silvina Vargas-Gil & Carolina Pérez-Brandan, 2022. "Soil Properties and Bacterial Communities Associated with the Rhizosphere of the Common Bean after Using Brachiaria brizantha as a Service Crop: A 10-Year Field Experiment," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    20. Sen Wang & Liuyi Ding & Wanyu Liu & Jun Wang & Yali Qian, 2021. "Effect of Plastic Mulching on Soil Carbon and Nitrogen Cycling-Related Bacterial Community Structure and Function in a Dryland Spring Maize Field," Agriculture, MDPI, vol. 11(11), pages 1-13, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47392-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.