IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46905-5.html
   My bibliography  Save this article

A genome-centric view of the role of the Acropora kenti microbiome in coral health and resilience

Author

Listed:
  • Lauren F. Messer

    (Queensland University of Technology
    University of Stirling)

  • David G. Bourne

    (James Cook University
    Australian Institute of Marine Science)

  • Steven J. Robbins

    (The University of Queensland)

  • Megan Clay

    (Queensland University of Technology)

  • Sara C. Bell

    (James Cook University
    Australian Institute of Marine Science)

  • Simon J. McIlroy

    (Queensland University of Technology)

  • Gene W. Tyson

    (Queensland University of Technology)

Abstract

Microbial diversity has been extensively explored in reef-building corals. However, the functional roles of coral-associated microorganisms remain poorly elucidated. Here, we recover 191 bacterial and 10 archaeal metagenome-assembled genomes (MAGs) from the coral Acropora kenti (formerly A. tenuis) and adjacent seawater, to identify microbial functions and metabolic interactions within the holobiont. We show that 82 MAGs were specific to the A. kenti holobiont, including members of the Pseudomonadota, Bacteroidota, and Desulfobacterota. A. kenti-specific MAGs displayed significant differences in their genomic features and functional potential relative to seawater-specific MAGs, with a higher prevalence of genes involved in host immune system evasion, nitrogen and carbon fixation, and synthesis of five essential B-vitamins. We find a diversity of A. kenti-specific MAGs encode the biosynthesis of essential amino acids, such as tryptophan, histidine, and lysine, which cannot be de novo synthesised by the host or Symbiodiniaceae. Across a water quality gradient spanning 2° of latitude, A. kenti microbial community composition is correlated to increased temperature and dissolved inorganic nitrogen, with corresponding enrichment in molecular chaperones, nitrate reductases, and a heat-shock protein. We reveal mechanisms of A. kenti-microbiome-symbiosis on the Great Barrier Reef, highlighting the interactions underpinning the health of this keystone holobiont.

Suggested Citation

  • Lauren F. Messer & David G. Bourne & Steven J. Robbins & Megan Clay & Sara C. Bell & Simon J. McIlroy & Gene W. Tyson, 2024. "A genome-centric view of the role of the Acropora kenti microbiome in coral health and resilience," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46905-5
    DOI: 10.1038/s41467-024-46905-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46905-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46905-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marie E. Strader & Kate M. Quigley, 2022. "The role of gene expression and symbiosis in reef-building coral acquired heat tolerance," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. F. Joseph Pollock & Ryan McMinds & Styles Smith & David G. Bourne & Bette L. Willis & Mónica Medina & Rebecca Vega Thurber & Jesse R. Zaneveld, 2018. "Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    3. Jean-Baptiste Raina & Dianne M. Tapiolas & Sylvain Forêt & Adrian Lutz & David Abrego & Janja Ceh & François O. Seneca & Peta L. Clode & David G. Bourne & Bette L. Willis & Cherie A. Motti, 2013. "DMSP biosynthesis by an animal and its role in coral thermal stress response," Nature, Nature, vol. 502(7473), pages 677-680, October.
    4. Ben J. Woodcroft & Caitlin M. Singleton & Joel A. Boyd & Paul N. Evans & Joanne B. Emerson & Ahmed A. F. Zayed & Robert D. Hoelzle & Timothy O. Lamberton & Carmody K. McCalley & Suzanne B. Hodgkins & , 2018. "Genome-centric view of carbon processing in thawing permafrost," Nature, Nature, vol. 560(7716), pages 49-54, August.
    5. H. James Tripp & Joshua B. Kitner & Michael S. Schwalbach & John W. H. Dacey & Larry J. Wilhelm & Stephen J. Giovannoni, 2008. "SAR11 marine bacteria require exogenous reduced sulphur for growth," Nature, Nature, vol. 452(7188), pages 741-744, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Pedro Rodríguez-López & Chihua Wu & Tatiana A. Vishnivetskaya & Julian B. Murton & Wenqiang Tang & Chao Ma, 2022. "Permafrost in the Cretaceous supergreenhouse," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Flora Vincent & Matti Gralka & Guy Schleyer & Daniella Schatz & Miguel Cabrera-Brufau & Constanze Kuhlisch & Andreas Sichert & Silvia Vidal-Melgosa & Kyle Mayers & Noa Barak-Gavish & J. Michel Flores , 2023. "Viral infection switches the balance between bacterial and eukaryotic recyclers of organic matter during coccolithophore blooms," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. M. McCauley & T. L. Goulet & C. R. Jackson & S. Loesgen, 2023. "Systematic review of cnidarian microbiomes reveals insights into the structure, specificity, and fidelity of marine associations," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Pierre E. Galand & Hans-Joachim Ruscheweyh & Guillem Salazar & Corentin Hochart & Nicolas Henry & Benjamin C. C. Hume & Pedro H. Oliveira & Aude Perdereau & Karine Labadie & Caroline Belser & Emilie B, 2023. "Diversity of the Pacific Ocean coral reef microbiome," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. C. E. Dubé & M. Ziegler & A. Mercière & E. Boissin & S. Planes & C. A. -F. Bourmaud & C. R. Voolstra, 2021. "Naturally occurring fire coral clones demonstrate a genetic and environmental basis of microbiome composition," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Stefan Dyksma & Michael Pester, 2023. "Oxygen respiration and polysaccharide degradation by a sulfate-reducing acidobacterium," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Corentin Hochart & Lucas Paoli & Hans-Joachim Ruscheweyh & Guillem Salazar & Emilie Boissin & Sarah Romac & Julie Poulain & Guillaume Bourdin & Guillaume Iwankow & Clémentine Moulin & Maren Ziegler & , 2023. "Ecology of Endozoicomonadaceae in three coral genera across the Pacific Ocean," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Shaoming Gao & David Paez-Espino & Jintian Li & Hongxia Ai & Jieliang Liang & Zhenhao Luo & Jin Zheng & Hao Chen & Wensheng Shu & Linan Huang, 2022. "Patterns and ecological drivers of viral communities in acid mine drainage sediments across Southern China," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Luyao Kang & Yutong Song & Rachel Mackelprang & Dianye Zhang & Shuqi Qin & Leiyi Chen & Linwei Wu & Yunfeng Peng & Yuanhe Yang, 2024. "Metagenomic insights into microbial community structure and metabolism in alpine permafrost on the Tibetan Plateau," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Josep Ramoneda & Thomas B. N. Jensen & Morgan N. Price & Emilio O. Casamayor & Noah Fierer, 2023. "Taxonomic and environmental distribution of bacterial amino acid auxotrophies," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Ping Han & Xiufeng Tang & Hanna Koch & Xiyang Dong & Lijun Hou & Danhe Wang & Qian Zhao & Zhe Li & Min Liu & Sebastian Lücker & Guitao Shi, 2024. "Unveiling unique microbial nitrogen cycling and nitrification driver in coastal Antarctica," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46905-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.