IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47441-y.html
   My bibliography  Save this article

All-inclusive nitrifiers in Antarctic soils

Author

Listed:
  • Maximiliano Ortiz

    (Clemson University)

Abstract

Multidisciplinary culture-dependent and -independent techniques elucidate the unique microbial nitrogen cycle in nutrient-poor coastal Antarctica soils and reveal the contribution of novel key microbes to their nitrogen budget.

Suggested Citation

  • Maximiliano Ortiz, 2024. "All-inclusive nitrifiers in Antarctic soils," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47441-y
    DOI: 10.1038/s41467-024-47441-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47441-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47441-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mukan Ji & Chris Greening & Inka Vanwonterghem & Carlo R. Carere & Sean K. Bay & Jason A. Steen & Kate Montgomery & Thomas Lines & John Beardall & Josie van Dorst & Ian Snape & Matthew B. Stott & Phil, 2017. "Atmospheric trace gases support primary production in Antarctic desert surface soil," Nature, Nature, vol. 552(7685), pages 400-403, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fo-Ting Shen & Shih-Han Lin, 2021. "Shifts in Bacterial Community Associated with Green Manure Soybean Intercropping and Edaphic Properties in a Tea Plantation," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    2. Matteo B. Bertagni & Stephen W. Pacala & Fabien Paulot & Amilcare Porporato, 2022. "Risk of the hydrogen economy for atmospheric methane," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Ping Han & Xiufeng Tang & Hanna Koch & Xiyang Dong & Lijun Hou & Danhe Wang & Qian Zhao & Zhe Li & Min Liu & Sebastian Lücker & Guitao Shi, 2024. "Unveiling unique microbial nitrogen cycling and nitrification driver in coastal Antarctica," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47441-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.