IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47290-9.html
   My bibliography  Save this article

Cell-type-specific mRNA transcription and degradation kinetics in zebrafish embryogenesis from metabolically labeled single-cell RNA-seq

Author

Listed:
  • Lior Fishman

    (The Hebrew University of Jerusalem)

  • Avani Modak

    (NIH)

  • Gal Nechooshtan

    (The Hebrew University of Jerusalem)

  • Talya Razin

    (The Hebrew University of Jerusalem)

  • Florian Erhard

    (Institute for Virology and Immunobiology, University of Würzburg
    University of Regensburg)

  • Aviv Regev

    (MIT
    Klarman Cell Observatory Broad Institute of MIT and Harvard Cambridge)

  • Jeffrey A. Farrell

    (NIH)

  • Michal Rabani

    (The Hebrew University of Jerusalem)

Abstract

During embryonic development, pluripotent cells assume specialized identities by adopting particular gene expression profiles. However, systematically dissecting the relative contributions of mRNA transcription and degradation to shaping those profiles remains challenging, especially within embryos with diverse cellular identities. Here, we combine single-cell RNA-Seq and metabolic labeling to capture temporal cellular transcriptomes of zebrafish embryos where newly-transcribed (zygotic) and pre-existing (maternal) mRNA can be distinguished. We introduce kinetic models to quantify mRNA transcription and degradation rates within individual cell types during their specification. These models reveal highly varied regulatory rates across thousands of genes, coordinated transcription and destruction rates for many transcripts, and link differences in degradation to specific sequence elements. They also identify cell-type-specific differences in degradation, namely selective retention of maternal transcripts within primordial germ cells and enveloping layer cells, two of the earliest specified cell types. Our study provides a quantitative approach to study mRNA regulation during a dynamic spatio-temporal response.

Suggested Citation

  • Lior Fishman & Avani Modak & Gal Nechooshtan & Talya Razin & Florian Erhard & Aviv Regev & Jeffrey A. Farrell & Michal Rabani, 2024. "Cell-type-specific mRNA transcription and degradation kinetics in zebrafish embryogenesis from metabolically labeled single-cell RNA-seq," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47290-9
    DOI: 10.1038/s41467-024-47290-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47290-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47290-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gert-Jan Hendriks & Lisa A. Jung & Anton J. M. Larsson & Michael Lidschreiber & Oscar Andersson Forsman & Katja Lidschreiber & Patrick Cramer & Rickard Sandberg, 2019. "NASC-seq monitors RNA synthesis in single cells," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Florian Erhard & Marisa A. P. Baptista & Tobias Krammer & Thomas Hennig & Marius Lange & Panagiota Arampatzi & Christopher S. Jürges & Fabian J. Theis & Antoine-Emmanuel Saliba & Lars Dölken, 2019. "scSLAM-seq reveals core features of transcription dynamics in single cells," Nature, Nature, vol. 571(7765), pages 419-423, July.
    3. Jianheng Liu & Tao Huang & Wanying Chen & Chenhui Ding & Tianxuan Zhao & Xueni Zhao & Bing Cai & Yusen Zhang & Song Li & Ling Zhang & Maoguang Xue & Xiuju He & Wanzhong Ge & Canquan Zhou & Yanwen Xu &, 2022. "Developmental mRNA m5C landscape and regulatory innovations of massive m5C modification of maternal mRNAs in animals," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Mohamed A. El-Brolosy & Zacharias Kontarakis & Andrea Rossi & Carsten Kuenne & Stefan Günther & Nana Fukuda & Khrievono Kikhi & Giulia L. M. Boezio & Carter M. Takacs & Shih-Lei Lai & Ryuichi Fukuda &, 2019. "Genetic compensation triggered by mutant mRNA degradation," Nature, Nature, vol. 568(7751), pages 193-197, April.
    5. Miler T. Lee & Ashley R. Bonneau & Carter M. Takacs & Ariel A. Bazzini & Kate R. DiVito & Elizabeth S. Fleming & Antonio J. Giraldez, 2013. "Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition," Nature, Nature, vol. 503(7476), pages 360-364, November.
    6. Karoline Holler & Anika Neuschulz & Philipp Drewe-Boß & Janita Mintcheva & Bastiaan Spanjaard & Roberto Arsiè & Uwe Ohler & Markus Landthaler & Jan Philipp Junker, 2021. "Spatio-temporal mRNA tracking in the early zebrafish embryo," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teresa Rummel & Lygeri Sakellaridi & Florian Erhard, 2023. "grandR: a comprehensive package for nucleotide conversion RNA-seq data analysis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Meijiang Gao & Marina Veil & Marcus Rosenblatt & Aileen Julia Riesle & Anna Gebhard & Helge Hass & Lenka Buryanova & Lev Y. Yampolsky & Björn Grüning & Sergey V. Ulianov & Jens Timmer & Daria Onichtch, 2022. "Pluripotency factors determine gene expression repertoire at zygotic genome activation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Shichao Lin & Kun Yin & Yingkun Zhang & Fanghe Lin & Xiaoyong Chen & Xi Zeng & Xiaoxu Guo & Huimin Zhang & Jia Song & Chaoyong Yang, 2023. "Well-TEMP-seq as a microwell-based strategy for massively parallel profiling of single-cell temporal RNA dynamics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Antonios Apostolopoulos & Naohiro Kawamoto & Siu Yu A. Chow & Hitomi Tsuiji & Yoshiho Ikeuchi & Yuichi Shichino & Shintaro Iwasaki, 2024. "dCas13-mediated translational repression for accurate gene silencing in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Jing Zhang & Huili Li & Lee A. Niswander, 2024. "m5C methylated lncRncr3–MeCP2 interaction restricts miR124a-initiated neurogenesis," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Federica Diofano & Karolina Weinmann & Isabelle Schneider & Kevin D Thiessen & Wolfgang Rottbauer & Steffen Just, 2020. "Genetic compensation prevents myopathy and heart failure in an in vivo model of Bag3 deficiency," PLOS Genetics, Public Library of Science, vol. 16(11), pages 1-24, November.
    7. Vishnu Muraleedharan Saraswathy & Lili Zhou & Mayssa H. Mokalled, 2024. "Single-cell analysis of innate spinal cord regeneration identifies intersecting modes of neuronal repair," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    8. Jasper Panten & Tobias Heinen & Christina Ernst & Nils Eling & Rebecca E. Wagner & Maja Satorius & John C. Marioni & Oliver Stegle & Duncan T. Odom, 2024. "The dynamic genetic determinants of increased transcriptional divergence in spermatids," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Bibiana Costa & Jennifer Becker & Tobias Krammer & Felix Mulenge & Verónica Durán & Andreas Pavlou & Olivia Luise Gern & Xiaojing Chu & Yang Li & Luka Čičin-Šain & Britta Eiz-Vesper & Martin Messerle , 2024. "Human cytomegalovirus exploits STING signaling and counteracts IFN/ISG induction to facilitate infection of dendritic cells," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Thomas Juan & Agatha Ribeiro da Silva & Bárbara Cardoso & SoEun Lim & Violette Charteau & Didier Y. R. Stainier, 2023. "Multiple pkd and piezo gene family members are required for atrioventricular valve formation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. You Wu & Wenna Shao & Mengxiao Yan & Yuqin Wang & Pengfei Xu & Guoqiang Huang & Xiaofei Li & Brian D. Gregory & Jun Yang & Hongxia Wang & Xiang Yu, 2024. "Transfer learning enables identification of multiple types of RNA modifications using nanopore direct RNA sequencing," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    12. Saurabh J. Pradhan & Puli Chandramouli Reddy & Michael Smutny & Ankita Sharma & Keisuke Sako & Meghana S. Oak & Rini Shah & Mrinmoy Pal & Ojas Deshpande & Greg Dsilva & Yin Tang & Rakesh Mishra & Giri, 2021. "Satb2 acts as a gatekeeper for major developmental transitions during early vertebrate embryogenesis," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    13. Carmen Aguilar & Mindaugas Pauzuolis & Malvika Pompaiah & Ehsan Vafadarnejad & Panagiota Arampatzi & Mara Fischer & Dominik Narres & Mastura Neyazi & Özge Kayisoglu & Thomas Sell & Nils Blüthgen & Mar, 2022. "Helicobacter pylori shows tropism to gastric differentiated pit cells dependent on urea chemotaxis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Aileen Julia Riesle & Meijiang Gao & Marcus Rosenblatt & Jacques Hermes & Helge Hass & Anna Gebhard & Marina Veil & Björn Grüning & Jens Timmer & Daria Onichtchouk, 2023. "Activator-blocker model of transcriptional regulation by pioneer-like factors," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    15. Min Zhou & Yuan Li & Xiao-Lei Yao & Jing Zhang & Sheng Liu & Hong-Rui Cao & Shuang Bai & Chun-Qu Chen & Dan-Xun Zhang & Ao Xu & Jia-Ning Lei & Qian-Zhuo Mao & Yu Zhou & De-Qiang Duanmu & Yue-Feng Guan, 2024. "Inorganic nitrogen inhibits symbiotic nitrogen fixation through blocking NRAMP2-mediated iron delivery in soybean nodules," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Andrew J. Heindel & Jeffrey W. Brulet & Xiantao Wang & Michael W. Founds & Adam H. Libby & Dina L. Bai & Michael C. Lemke & David M. Leace & Thurl E. Harris & Markus Hafner & Ku-Lung Hsu, 2023. "Chemoproteomic capture of RNA binding activity in living cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Luca Guglielmi & Claire Heliot & Sunil Kumar & Yuriy Alexandrov & Ilaria Gori & Foteini Papaleonidopoulou & Christopher Barrington & Philip East & Andrew D. Economou & Paul M. W. French & James McGint, 2021. "Smad4 controls signaling robustness and morphogenesis by differentially contributing to the Nodal and BMP pathways," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    18. Xiaoqing Nie & Qianhua Xu & Chengpeng Xu & Fengling Chen & Qizhi Wang & Dandan Qin & Rui Wang & Zheng Gao & Xukun Lu & Xinai Yang & Yu Wu & Chen Gu & Wei Xie & Lei Li, 2023. "Maternal TDP-43 interacts with RNA Pol II and regulates zygotic genome activation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Johannes Benedum & Vedran Franke & Lisa-Marie Appel & Lena Walch & Melania Bruno & Rebecca Schneeweiss & Juliane Gruber & Helena Oberndorfer & Emma Frank & Xué Strobl & Anton Polyansky & Bojan Zagrovi, 2023. "The SPOC proteins DIDO3 and PHF3 co-regulate gene expression and neuronal differentiation," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    20. Chao Fang & Zhihui Sun & Shichen Li & Tong Su & Lingshuang Wang & Lidong Dong & Haiyang Li & Lanxin Li & Lingping Kong & Zhiquan Yang & Xiaoya Lin & Alibek Zatybekov & Baohui Liu & Fanjiang Kong & Sij, 2024. "Subfunctionalisation and self-repression of duplicated E1 homologues finetunes soybean flowering and adaptation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47290-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.