IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v614y2023i7948d10.1038_s41586-022-05579-z.html
   My bibliography  Save this article

A universal interface for plug-and-play assembly of stretchable devices

Author

Listed:
  • Ying Jiang

    (Nanyang Technological University)

  • Shaobo Ji

    (Nanyang Technological University)

  • Jing Sun

    (Chinese Academy of Sciences (CAS))

  • Jianping Huang

    (Chinese Academy of Sciences (CAS))

  • Yuanheng Li

    (Chinese Academy of Sciences (CAS))

  • Guijin Zou

    (Technology and Research (A*STAR))

  • Teddy Salim

    (Nanyang Technological University)

  • Changxian Wang

    (Nanyang Technological University)

  • Wenlong Li

    (Technology and Research (A*STAR))

  • Haoran Jin

    (Nanyang Technological University)

  • Jie Xu

    (Stanford University)

  • Sihong Wang

    (Stanford University)

  • Ting Lei

    (Stanford University)

  • Xuzhou Yan

    (Stanford University)

  • Wendy Yen Xian Peh

    (National University of Singapore)

  • Shih-Cheng Yen

    (National University of Singapore)

  • Zhihua Liu

    (Technology and Research (A*STAR))

  • Mei Yu

    (Chinese Academy of Sciences (CAS))

  • Hang Zhao

    (Chinese Academy of Sciences (CAS))

  • Zechao Lu

    (Chinese Academy of Sciences (CAS))

  • Guanglin Li

    (Chinese Academy of Sciences (CAS))

  • Huajian Gao

    (Technology and Research (A*STAR)
    Nanyang Technological University)

  • Zhiyuan Liu

    (Chinese Academy of Sciences (CAS))

  • Zhenan Bao

    (Stanford University)

  • Xiaodong Chen

    (Nanyang Technological University
    Technology and Research (A*STAR)
    Nanyang Technological University)

Abstract

Stretchable hybrid devices have enabled high-fidelity implantable1–3 and on-skin4–6 monitoring of physiological signals. These devices typically contain soft modules that match the mechanical requirements in humans7,8 and soft robots9,10, rigid modules containing Si-based microelectronics11,12 and protective encapsulation modules13,14. To make such a system mechanically compliant, the interconnects between the modules need to tolerate stress concentration that may limit their stretching and ultimately cause debonding failure15–17. Here, we report a universal interface that can reliably connect soft, rigid and encapsulation modules together to form robust and highly stretchable devices in a plug-and-play manner. The interface, consisting of interpenetrating polymer and metal nanostructures, connects modules by simply pressing without using pastes. Its formation is depicted by a biphasic network growth model. Soft–soft modules joined by this interface achieved 600% and 180% mechanical and electrical stretchability, respectively. Soft and rigid modules can also be electrically connected using the above interface. Encapsulation on soft modules with this interface is strongly adhesive with an interfacial toughness of 0.24 N mm−1. As a proof of concept, we use this interface to assemble stretchable devices for in vivo neuromodulation and on-skin electromyography, with high signal quality and mechanical resistance. We expect such a plug-and-play interface to simplify and accelerate the development of on-skin and implantable stretchable devices.

Suggested Citation

  • Ying Jiang & Shaobo Ji & Jing Sun & Jianping Huang & Yuanheng Li & Guijin Zou & Teddy Salim & Changxian Wang & Wenlong Li & Haoran Jin & Jie Xu & Sihong Wang & Ting Lei & Xuzhou Yan & Wendy Yen Xian P, 2023. "A universal interface for plug-and-play assembly of stretchable devices," Nature, Nature, vol. 614(7948), pages 456-462, February.
  • Handle: RePEc:nat:nature:v:614:y:2023:i:7948:d:10.1038_s41586-022-05579-z
    DOI: 10.1038/s41586-022-05579-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05579-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05579-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soosang Chae & Won Jin Choi & Lisa Julia Nebel & Chang Hee Cho & Quinn A. Besford & André Knapp & Pavlo Makushko & Yevhen Zabila & Oleksandr Pylypovskyi & Min Woo Jeong & Stanislav Avdoshenko & Oliver, 2024. "Kinetically controlled metal-elastomer nanophases for environmentally resilient stretchable electronics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Shuangshuang Wan & Kepeng Wang & Peihong Huang & Xian Guo & Wurui Liu & Yaocheng Li & Jingjing Zhang & Zhiyang Li & Jiacheng Song & Wenjing Yang & Xianzheng Zhang & Xianguang Ding & David Tai Leong & , 2024. "Mechanoelectronic stimulation of autologous extracellular vesicle biosynthesis implant for gut microbiota modulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Falon C. Kalutantirige & Jinlong He & Lehan Yao & Stephen Cotty & Shan Zhou & John W. Smith & Emad Tajkhorshid & Charles M. Schroeder & Jeffrey S. Moore & Hyosung An & Xiao Su & Ying Li & Qian Chen, 2024. "Beyond nothingness in the formation and functional relevance of voids in polymer films," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Lingxiao Cao & Zhonghao Wang & Daiwei Hu & Haoxuan Dong & Chunchun Qu & Yi Zheng & Chao Yang & Rui Zhang & Chunxiao Xing & Zhen Li & Zhe Xin & Du Chen & Zhenghe Song & Zhizhu He, 2024. "Pressure-constrained sonication activation of flexible printed metal circuit," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Sujin Jeong & Hyungsoo Yoon & Lukas Felix Michalek & Geonhee Kim & Jinhyoung Kim & Jiseok Seo & Dahyun Kim & Hwaeun Park & Byeongmoon Lee & Yongtaek Hong, 2024. "Printable, stretchable metal-vapor-desorption layers for high-fidelity patterning in soft, freeform electronics," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Liqing Ai & Weikang Lin & Chunyan Cao & Pengyu Li & Xuejiao Wang & Dong Lv & Xin Li & Zhengbao Yang & Xi Yao, 2023. "Tough soldering for stretchable electronics by small-molecule modulated interfacial assemblies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Yangshuang Bian & Mingliang Zhu & Chengyu Wang & Kai Liu & Wenkang Shi & Zhiheng Zhu & Mingcong Qin & Fan Zhang & Zhiyuan Zhao & Hanlin Wang & Yunqi Liu & Yunlong Guo, 2024. "A detachable interface for stable low-voltage stretchable transistor arrays and high-resolution X-ray imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Jie Cao & Xusheng Liu & Jie Qiu & Zhifei Yue & Yang Li & Qian Xu & Yan Chen & Jiewen Chen & Hongfei Cheng & Guozhong Xing & Enming Song & Ming Wang & Qi Liu & Ming Liu, 2024. "Anti-friction gold-based stretchable electronics enabled by interfacial diffusion-induced cohesion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Yan Shao & Jianfeng Yan & Yinglin Zhi & Chun Li & Qingxian Li & Kaimin Wang & Rui Xia & Xinyue Xiang & Liqian Liu & Guoli Chen & Hanxue Zhang & Daohang Cai & Haochuan Wang & Xing Cheng & Canhui Yang &, 2024. "A universal packaging substrate for mechanically stable assembly of stretchable electronics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:614:y:2023:i:7948:d:10.1038_s41586-022-05579-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.