IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47213-8.html
   My bibliography  Save this article

Potent human neutralizing antibodies against Nipah virus derived from two ancestral antibody heavy chains

Author

Listed:
  • Li Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Mengmeng Sun

    (University of Science and Technology of China)

  • Huajun Zhang

    (Chinese Academy of Sciences)

  • Xinghai Zhang

    (Chinese Academy of Sciences)

  • Yanfeng Yao

    (Chinese Academy of Sciences)

  • Ming Li

    (University of Science and Technology of China)

  • Kangyin Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Pengfei Fan

    (Beijing Institute of Biotechnology)

  • Haiwei Zhang

    (Chinese Academy of Sciences)

  • Ye Qin

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhe Zhang

    (Chinese Academy of Sciences)

  • Entao Li

    (University of Science and Technology of China
    University of Science and Technology of China
    Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases)

  • Zhen Chen

    (Chinese Academy of Sciences)

  • Wuxiang Guan

    (Chinese Academy of Sciences)

  • Shanshan Li

    (University of Science and Technology of China)

  • Changming Yu

    (Beijing Institute of Biotechnology)

  • Kaiming Zhang

    (University of Science and Technology of China
    Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases
    University of Science and Technology of China
    University of Science and Technology of China)

  • Rui Gong

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Hubei Jiangxia Laboratory)

  • Sandra Chiu

    (University of Science and Technology of China
    University of Science and Technology of China
    Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases)

Abstract

Nipah virus (NiV) is a World Health Organization priority pathogen and there are currently no approved drugs for clinical immunotherapy. Through the use of a naïve human phage-displayed Fab library, two neutralizing antibodies (NiV41 and NiV42) targeting the NiV receptor binding protein (RBP) were identified. Following affinity maturation, antibodies derived from NiV41 display cross-reactivity against both NiV and Hendra virus (HeV), whereas the antibody based on NiV42 is only specific to NiV. Results of immunogenetic analysis reveal a correlation between the maturation of antibodies and their antiviral activity. In vivo testing of NiV41 and its mature form (41-6) show protective efficacy against a lethal NiV challenge in hamsters. Furthermore, a 2.88 Å Cryo-EM structure of the tetrameric RBP and antibody complex demonstrates that 41-6 blocks the receptor binding interface. These findings can be beneficial for the development of antiviral drugs and the design of vaccines with broad spectrum against henipaviruses.

Suggested Citation

  • Li Chen & Mengmeng Sun & Huajun Zhang & Xinghai Zhang & Yanfeng Yao & Ming Li & Kangyin Li & Pengfei Fan & Haiwei Zhang & Ye Qin & Zhe Zhang & Entao Li & Zhen Chen & Wuxiang Guan & Shanshan Li & Chang, 2024. "Potent human neutralizing antibodies against Nipah virus derived from two ancestral antibody heavy chains," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47213-8
    DOI: 10.1038/s41467-024-47213-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47213-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47213-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicole A. Doria-Rose & Chaim A. Schramm & Jason Gorman & Penny L. Moore & Jinal N. Bhiman & Brandon J. DeKosky & Michael J. Ernandes & Ivelin S. Georgiev & Helen J. Kim & Marie Pancera & Ryan P. Staup, 2014. "Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies," Nature, Nature, vol. 509(7498), pages 55-62, May.
    2. Hua-Xin Liao & Rebecca Lynch & Tongqing Zhou & Feng Gao & S. Munir Alam & Scott D. Boyd & Andrew Z. Fire & Krishna M. Roskin & Chaim A. Schramm & Zhenhai Zhang & Jiang Zhu & Lawrence Shapiro & James C, 2013. "Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus," Nature, Nature, vol. 496(7446), pages 469-476, April.
    3. Oscar A. Negrete & Ernest L. Levroney & Hector C. Aguilar & Andrea Bertolotti-Ciarlet & Ronen Nazarian & Sara Tajyar & Benhur Lee, 2005. "EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus," Nature, Nature, vol. 436(7049), pages 401-405, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Annemart Koornneef & Kanika Vanshylla & Gijs Hardenberg & Lucy Rutten & Nika M. Strokappe & Jeroen Tolboom & Jessica Vreugdenhil & Karin Feddes-de Boer & Aditya Perkasa & Sven Blokland & Judith A. Bur, 2024. "CoPoP liposomes displaying stabilized clade C HIV-1 Env elicit tier 2 multiclade neutralization in rabbits," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Christoph Kreer & Cosimo Lupo & Meryem S. Ercanoglu & Lutz Gieselmann & Natanael Spisak & Jan Grossbach & Maike Schlotz & Philipp Schommers & Henning Gruell & Leona Dold & Andreas Beyer & Armita Nourm, 2023. "Probabilities of developing HIV-1 bNAb sequence features in uninfected and chronically infected individuals," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Kun-Wei Chan & Christina C. Luo & Hong Lu & Xueling Wu & Xiang-Peng Kong, 2021. "A site of vulnerability at V3 crown defined by HIV-1 bNAb M4008_N1," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Jason Gorman & Crystal Sao-Fong Cheung & Zhijian Duan & Li Ou & Maple Wang & Xuejun Chen & Cheng Cheng & Andrea Biju & Yaping Sun & Pengfei Wang & Yongping Yang & Baoshan Zhang & Jeffrey C. Boyington , 2024. "Cleavage-intermediate Lassa virus trimer elicits neutralizing responses, identifies neutralizing nanobodies, and reveals an apex-situated site-of-vulnerability," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Ge Yang & Dong Wang & Bin Liu, 2024. "Structure of the Nipah virus polymerase phosphoprotein complex," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Bailey B. Banach & Sergei Pletnev & Adam S. Olia & Kai Xu & Baoshan Zhang & Reda Rawi & Tatsiana Bylund & Nicole A. Doria-Rose & Thuy Duong Nguyen & Ahmed S. Fahad & Myungjin Lee & Bob C. Lin & Tracy , 2023. "Antibody-directed evolution reveals a mechanism for enhanced neutralization at the HIV-1 fusion peptide site," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Mathilde Foglierini & Pauline Nortier & Rachel Schelling & Rahel R. Winiger & Philippe Jacquet & Sijy O’Dell & Davide Demurtas & Maxmillian Mpina & Omar Lweno & Yannick D. Muller & Constantinos Petrov, 2024. "RAIN: machine learning-based identification for HIV-1 bNAbs," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Svenja Weiss & Vincenza Itri & Ruimin Pan & Xunqing Jiang & Christina C. Luo & Lynn Morris & Delphine C. Malherbe & Philip Barnette & Jeff Alexander & Xiang-Peng Kong & Nancy L. Haigwood & Ann J. Hess, 2022. "Differential V2-directed antibody responses in non-human primates infected with SHIVs or immunized with diverse HIV vaccines," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Kim-Marie A. Dam & Christopher O. Barnes & Harry B. Gristick & Till Schoofs & Priyanthi N. P. Gnanapragasam & Michel C. Nussenzweig & Pamela J. Bjorkman, 2022. "HIV-1 CD4-binding site germline antibody–Env structures inform vaccine design," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Yingying Guo & Songyue Wu & Wenting Li & Haonan Yang & Tianhao Shi & Bin Ju & Zheng Zhang & Renhong Yan, 2024. "The cryo-EM structure of homotetrameric attachment glycoprotein from langya henipavirus," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Rory Henderson & Ye Zhou & Victoria Stalls & Kevin Wiehe & Kevin O. Saunders & Kshitij Wagh & Kara Anasti & Maggie Barr & Robert Parks & S. Munir Alam & Bette Korber & Barton F. Haynes & Alberto Barte, 2023. "Structural basis for breadth development in the HIV-1 V3-glycan targeting DH270 antibody clonal lineage," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Joana Dias & Giulia Fabozzi & Slim Fourati & Xuejun Chen & Cuiping Liu & David R. Ambrozak & Amy Ransier & Farida Laboune & Jianfei Hu & Wei Shi & Kylie March & Anna A. Maximova & Stephen D. Schmidt &, 2024. "Administration of anti-HIV-1 broadly neutralizing monoclonal antibodies with increased affinity to Fcγ receptors during acute SHIVAD8-EO infection," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Shixia Wang & Kun-Wei Chan & Danlan Wei & Xiuwen Ma & Shuying Liu & Guangnan Hu & Saeyoung Park & Ruimin Pan & Ying Gu & Alexandra F. Nazzari & Adam S. Olia & Kai Xu & Bob C. Lin & Mark K. Louder & Kr, 2024. "Human CD4-binding site antibody elicited by polyvalent DNA prime-protein boost vaccine neutralizes cross-clade tier-2-HIV strains," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47213-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.