IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44534-y.html
   My bibliography  Save this article

Cleavage-intermediate Lassa virus trimer elicits neutralizing responses, identifies neutralizing nanobodies, and reveals an apex-situated site-of-vulnerability

Author

Listed:
  • Jason Gorman

    (National Institutes of Health)

  • Crystal Sao-Fong Cheung

    (National Institutes of Health)

  • Zhijian Duan

    (National Institutes of Health)

  • Li Ou

    (National Institutes of Health)

  • Maple Wang

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Xuejun Chen

    (National Institutes of Health)

  • Cheng Cheng

    (National Institutes of Health)

  • Andrea Biju

    (National Institutes of Health)

  • Yaping Sun

    (National Institutes of Health)

  • Pengfei Wang

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Yongping Yang

    (National Institutes of Health)

  • Baoshan Zhang

    (National Institutes of Health)

  • Jeffrey C. Boyington

    (National Institutes of Health)

  • Tatsiana Bylund

    (National Institutes of Health)

  • Sam Charaf

    (National Institutes of Health)

  • Steven J. Chen

    (National Institutes of Health)

  • Haijuan Du

    (National Institutes of Health)

  • Amy R. Henry

    (National Institutes of Health)

  • Tracy Liu

    (National Institutes of Health)

  • Edward K. Sarfo

    (National Institutes of Health)

  • Chaim A. Schramm

    (National Institutes of Health)

  • Chen-Hsiang Shen

    (National Institutes of Health)

  • Tyler Stephens

    (Frederick National Laboratory for Cancer Research)

  • I-Ting Teng

    (National Institutes of Health)

  • John-Paul Todd

    (National Institutes of Health)

  • Yaroslav Tsybovsky

    (Frederick National Laboratory for Cancer Research)

  • Raffaello Verardi

    (National Institutes of Health)

  • Danyi Wang

    (National Institutes of Health)

  • Shuishu Wang

    (National Institutes of Health)

  • Zhantong Wang

    (National Institutes of Health)

  • Cheng-Yan Zheng

    (National Institutes of Health)

  • Tongqing Zhou

    (National Institutes of Health)

  • Daniel C. Douek

    (National Institutes of Health)

  • John R. Mascola

    (National Institutes of Health)

  • David D. Ho

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Mitchell Ho

    (National Institutes of Health)

  • Peter D. Kwong

    (National Institutes of Health)

Abstract

Lassa virus (LASV) infection is expanding outside its traditionally endemic areas in West Africa, posing a pandemic biothreat. LASV-neutralizing antibodies, moreover, have proven difficult to elicit. To gain insight into LASV neutralization, here we develop a prefusion-stabilized LASV glycoprotein trimer (GPC), pan it against phage libraries comprising single-domain antibodies (nanobodies) from shark and camel, and identify one, D5, which neutralizes LASV. Cryo-EM analyses reveal D5 to recognize a cleavage-dependent site-of-vulnerability at the trimer apex. The recognized site appears specific to GPC intermediates, with protomers lacking full cleavage between GP1 and GP2 subunits. Guinea pig immunizations with the prefusion-stabilized cleavage-intermediate LASV GPC, first as trimer and then as a nanoparticle, induce neutralizing responses, targeting multiple epitopes including that of D5; we identify a neutralizing antibody (GP23) from the immunized guinea pigs. Collectively, our findings define a prefusion-stabilized GPC trimer, reveal an apex-situated site-of-vulnerability, and demonstrate elicitation of LASV-neutralizing responses by a cleavage-intermediate LASV trimer.

Suggested Citation

  • Jason Gorman & Crystal Sao-Fong Cheung & Zhijian Duan & Li Ou & Maple Wang & Xuejun Chen & Cheng Cheng & Andrea Biju & Yaping Sun & Pengfei Wang & Yongping Yang & Baoshan Zhang & Jeffrey C. Boyington , 2024. "Cleavage-intermediate Lassa virus trimer elicits neutralizing responses, identifies neutralizing nanobodies, and reveals an apex-situated site-of-vulnerability," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44534-y
    DOI: 10.1038/s41467-023-44534-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44534-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44534-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicole A. Doria-Rose & Chaim A. Schramm & Jason Gorman & Penny L. Moore & Jinal N. Bhiman & Brandon J. DeKosky & Michael J. Ernandes & Ivelin S. Georgiev & Helen J. Kim & Marie Pancera & Ryan P. Staup, 2014. "Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies," Nature, Nature, vol. 509(7498), pages 55-62, May.
    2. Laura M. Walker & Michael Huber & Katie J. Doores & Emilia Falkowska & Robert Pejchal & Jean-Philippe Julien & Sheng-Kai Wang & Alejandra Ramos & Po-Ying Chan-Hui & Matthew Moyle & Jennifer L. Mitcham, 2011. "Broad neutralization coverage of HIV by multiple highly potent antibodies," Nature, Nature, vol. 477(7365), pages 466-470, September.
    3. James E. Robinson & Kathryn M. Hastie & Robert W. Cross & Rachael E. Yenni & Deborah H. Elliott & Julie A. Rouelle & Chandrika B. Kannadka & Ashley A. Smira & Courtney E. Garry & Benjamin T. Bradley &, 2016. "Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits," Nature Communications, Nature, vol. 7(1), pages 1-14, September.
    4. Jianliang Xu & Kai Xu & Seolkyoung Jung & Andrea Conte & Jenna Lieberman & Frauke Muecksch & Julio Cesar Cetrulo Lorenzi & Solji Park & Fabian Schmidt & Zijun Wang & Yaoxing Huang & Yang Luo & Manoj S, 2021. "Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants," Nature, Nature, vol. 595(7866), pages 278-282, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kun-Wei Chan & Christina C. Luo & Hong Lu & Xueling Wu & Xiang-Peng Kong, 2021. "A site of vulnerability at V3 crown defined by HIV-1 bNAb M4008_N1," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Bailey B. Banach & Sergei Pletnev & Adam S. Olia & Kai Xu & Baoshan Zhang & Reda Rawi & Tatsiana Bylund & Nicole A. Doria-Rose & Thuy Duong Nguyen & Ahmed S. Fahad & Myungjin Lee & Bob C. Lin & Tracy , 2023. "Antibody-directed evolution reveals a mechanism for enhanced neutralization at the HIV-1 fusion peptide site," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Annemart Koornneef & Kanika Vanshylla & Gijs Hardenberg & Lucy Rutten & Nika M. Strokappe & Jeroen Tolboom & Jessica Vreugdenhil & Karin Feddes-de Boer & Aditya Perkasa & Sven Blokland & Judith A. Bur, 2024. "CoPoP liposomes displaying stabilized clade C HIV-1 Env elicit tier 2 multiclade neutralization in rabbits," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Joana Dias & Giulia Fabozzi & Slim Fourati & Xuejun Chen & Cuiping Liu & David R. Ambrozak & Amy Ransier & Farida Laboune & Jianfei Hu & Wei Shi & Kylie March & Anna A. Maximova & Stephen D. Schmidt &, 2024. "Administration of anti-HIV-1 broadly neutralizing monoclonal antibodies with increased affinity to Fcγ receptors during acute SHIVAD8-EO infection," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Christoph Kreer & Cosimo Lupo & Meryem S. Ercanoglu & Lutz Gieselmann & Natanael Spisak & Jan Grossbach & Maike Schlotz & Philipp Schommers & Henning Gruell & Leona Dold & Andreas Beyer & Armita Nourm, 2023. "Probabilities of developing HIV-1 bNAb sequence features in uninfected and chronically infected individuals," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Durgadevi Parthasarathy & Karunakar Reddy Pothula & Sneha Ratnapriya & Héctor Cervera Benet & Ruth Parsons & Xiao Huang & Salam Sammour & Katarzyna Janowska & Miranda Harris & Joseph Sodroski & Priyam, 2024. "Conformational flexibility of HIV-1 envelope glycoproteins modulates transmitted/founder sensitivity to broadly neutralizing antibodies," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Wen-Han Yu & Peng Zhao & Monia Draghi & Claudia Arevalo & Christina B Karsten & Todd J Suscovich & Bronwyn Gunn & Hendrik Streeck & Abraham L Brass & Michael Tiemeyer & Michael Seaman & John R Mascola, 2018. "Exploiting glycan topography for computational design of Env glycoprotein antigenicity," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-28, April.
    8. Anna R. Mäkelä & Hasan Uğurlu & Liina Hannula & Ravi Kant & Petja Salminen & Riku Fagerlund & Sanna Mäki & Anu Haveri & Tomas Strandin & Lauri Kareinen & Jussi Hepojoki & Suvi Kuivanen & Lev Levanov &, 2023. "Intranasal trimeric sherpabody inhibits SARS-CoV-2 including recent immunoevasive Omicron subvariants," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Adam J. Ronk & Nicole M. Lloyd & Min Zhang & Caroline Atyeo & Hailee R. Perrett & Chad E. Mire & Kathryn M. Hastie & Rogier W. Sanders & Philip J. M. Brouwer & Erica Olmann Saphire & Andrew B. Ward & , 2023. "A Lassa virus mRNA vaccine confers protection but does not require neutralizing antibody in a guinea pig model of infection," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Svenja Weiss & Vincenza Itri & Ruimin Pan & Xunqing Jiang & Christina C. Luo & Lynn Morris & Delphine C. Malherbe & Philip Barnette & Jeff Alexander & Xiang-Peng Kong & Nancy L. Haigwood & Ann J. Hess, 2022. "Differential V2-directed antibody responses in non-human primates infected with SHIVs or immunized with diverse HIV vaccines," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Wei-Hung Chen & Agnes Hajduczki & Elizabeth J. Martinez & Hongjun Bai & Hanover Matz & Thomas M. Hill & Eric Lewitus & William C. Chang & Layla Dawit & Caroline E. Peterson & Phyllis A. Rees & Adelola, 2023. "Shark nanobodies with potent SARS-CoV-2 neutralizing activity and broad sarbecovirus reactivity," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Yunda Huang & Lily Zhang & Shelly Karuna & Philip Andrew & Michal Juraska & Joshua A. Weiner & Heather Angier & Evgenii Morgan & Yasmin Azzam & Edith Swann & Srilatha Edupuganti & Nyaradzo M. Mgodi & , 2023. "Adults on pre-exposure prophylaxis (tenofovir-emtricitabine) have faster clearance of anti-HIV monoclonal antibody VRC01," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    13. Anna Hake & Nico Pfeifer, 2017. "Prediction of HIV-1 sensitivity to broadly neutralizing antibodies shows a trend towards resistance over time," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-23, October.
    14. Hongjun Bai & Eric Lewitus & Yifan Li & Paul V. Thomas & Michelle Zemil & Mélanie Merbah & Caroline E. Peterson & Thujitha Thuraisamy & Phyllis A. Rees & Agnes Hajduczki & Vincent Dussupt & Bonnie Sli, 2024. "Contemporary HIV-1 consensus Env with AI-assisted redesigned hypervariable loops promote antibody binding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Craig A Magaret & David C Benkeser & Brian D Williamson & Bhavesh R Borate & Lindsay N Carpp & Ivelin S Georgiev & Ian Setliff & Adam S Dingens & Noah Simon & Marco Carone & Christopher Simpkins & Dav, 2019. "Prediction of VRC01 neutralization sensitivity by HIV-1 gp160 sequence features," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-35, April.
    16. Steven Schulz & Sébastien Boyer & Matteo Smerlak & Simona Cocco & Rémi Monasson & Clément Nizak & Olivier Rivoire, 2021. "Parameters and determinants of responses to selection in antibody libraries," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-24, March.
    17. Mingxi Li & Yifei Ren & Zhen Qin Aw & Bo Chen & Ziqing Yang & Yuqing Lei & Lin Cheng & Qingtai Liang & Junxian Hong & Yiling Yang & Jing Chen & Yi Hao Wong & Jing Wei & Sisi Shan & Senyan Zhang & Jiwa, 2022. "Broadly neutralizing and protective nanobodies against SARS-CoV-2 Omicron subvariants BA.1, BA.2, and BA.4/5 and diverse sarbecoviruses," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    18. Nicole A Doria-Rose & Han R Altae-Tran & Ryan S Roark & Stephen D Schmidt & Matthew S Sutton & Mark K Louder & Gwo-Yu Chuang & Robert T Bailer & Valerie Cortez & Rui Kong & Krisha McKee & Sijy O’Dell , 2017. "Mapping Polyclonal HIV-1 Antibody Responses via Next-Generation Neutralization Fingerprinting," PLOS Pathogens, Public Library of Science, vol. 13(1), pages 1-29, January.
    19. Fangzhu Zhao & Zachary T. Berndsen & Nuria Pedreño-Lopez & Alison Burns & Joel D. Allen & Shawn Barman & Wen-Hsin Lee & Srirupa Chakraborty & Sandrasegaram Gnanakaran & Leigh M. Sewall & Gabriel Ozoro, 2022. "Molecular insights into antibody-mediated protection against the prototypic simian immunodeficiency virus," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    20. Thomas Eden & Alessa Z. Schaffrath & Janusz Wesolowski & Tobias Stähler & Natalie Tode & Nathalie Richter & Waldemar Schäfer & Julia Hambach & Irm Hermans-Borgmeyer & Jannis Woens & Camille M. Gall & , 2024. "Generation of nanobodies from transgenic ‘LamaMice’ lacking an endogenous immunoglobulin repertoire," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44534-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.