IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49412-9.html
   My bibliography  Save this article

Investigation of artificial cells containing the Par system for bacterial plasmid segregation and inheritance mimicry

Author

Listed:
  • Jingjing Zhao

    (Harbin Institute of Technology)

  • Xiaojun Han

    (Harbin Institute of Technology)

Abstract

A crucial step in life processes is the transfer of accurate and correct genetic material to offspring. During the construction of autonomous artificial cells, a very important step is the inheritance of genetic information in divided artificial cells. The ParMRC system, as one of the most representative systems for DNA segregation in bacteria, can be purified and reconstituted into GUVs to form artificial cells. In this study, we demonstrate that the eGFP gene is segregated into two poles by a ParM filament with ParR as the intermediate linker to bind ParM and parC-eGFP DNA in artificial cells. After the ParM filament splits, the cells are externally induced to divide into two daughter cells that contain parC-eGFP DNA by osmotic pressure and laser irradiation. Using a PURE system, we translate eGFP DNA into enhanced green fluorescent proteins in daughter cells, and bacterial plasmid segregation and inheritance are successfully mimicked in artificial cells. Our results could lead to the construction of more sophisticated artificial cells that can reproduce with genetic information.

Suggested Citation

  • Jingjing Zhao & Xiaojun Han, 2024. "Investigation of artificial cells containing the Par system for bacterial plasmid segregation and inheritance mimicry," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49412-9
    DOI: 10.1038/s41467-024-49412-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49412-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49412-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew S. Moore & Stephen M. Coscia & Cory L. Simpson & Fabian E. Ortega & Eric C. Wait & John M. Heddleston & Jeffrey J. Nirschl & Christopher J. Obara & Pedro Guedes-Dias & C. Alexander Boecker & Te, 2021. "Actin cables and comet tails organize mitochondrial networks in mitosis," Nature, Nature, vol. 591(7851), pages 659-664, March.
    2. Diego A. Ramirez-Diaz & Adrián Merino-Salomón & Fabian Meyer & Michael Heymann & Germán Rivas & Marc Bramkamp & Petra Schwille, 2021. "FtsZ induces membrane deformations via torsional stress upon GTP hydrolysis," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Shunshi Kohyama & Adrián Merino-Salomón & Petra Schwille, 2022. "In vitro assembly, positioning and contraction of a division ring in minimal cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Xiangxiang Zhang & Chao Li & Fukai Liu & Wei Mu & Yongshuo Ren & Boyu Yang & Xiaojun Han, 2022. "High-throughput production of functional prototissues capable of producing NO for vasodilation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Qingchuan Li & Shubin Li & Xiangxiang Zhang & Weili Xu & Xiaojun Han, 2020. "Programmed magnetic manipulation of vesicles into spatially coded prototissue architectures arrays," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shubin Li & Yingming Zhao & Shuqi Wu & Xiangxiang Zhang & Boyu Yang & Liangfei Tian & Xiaojun Han, 2023. "Regulation of species metabolism in synthetic community systems by environmental pH oscillations," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Nishkantha Arulkumaran & Mervyn Singer & Stefan Howorka & Jonathan R. Burns, 2023. "Creating complex protocells and prototissues using simple DNA building blocks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Songyang Liu & Yanwen Zhang & Xiaoxiao He & Mei Li & Jin Huang & Xiaohai Yang & Kemin Wang & Stephen Mann & Jianbo Liu, 2022. "Signal processing and generation of bioactive nitric oxide in a model prototissue," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Peng Shi & Xiaoyu Ren & Jie Meng & Chenlu Kang & Yihe Wu & Yingxue Rong & Shujuan Zhao & Zhaodi Jiang & Ling Liang & Wanzhong He & Yuxin Yin & Xiangdong Li & Yong Liu & Xiaoshuai Huang & Yujie Sun & B, 2022. "Mechanical instability generated by Myosin 19 contributes to mitochondria cristae architecture and OXPHOS," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Xiangxiang Zhang & Chao Li & Fukai Liu & Wei Mu & Yongshuo Ren & Boyu Yang & Xiaojun Han, 2022. "High-throughput production of functional prototissues capable of producing NO for vasodilation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Jorik Waeterschoot & Willemien Gosselé & Špela Lemež & Xavier Casadevall i Solvas, 2024. "Artificial cells for in vivo biomedical applications through red blood cell biomimicry," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Jin Li & William D. Jamieson & Pantelitsa Dimitriou & Wen Xu & Paul Rohde & Boris Martinac & Matthew Baker & Bruce W. Drinkwater & Oliver K. Castell & David A. Barrow, 2022. "Building programmable multicompartment artificial cells incorporating remotely activated protein channels using microfluidics and acoustic levitation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Stephen M. Coscia & Andrew S. Moore & Cameron P. Thompson & Christian F. Tirrito & E. Michael Ostap & Erika L. F. Holzbaur, 2024. "An interphase actin wave promotes mitochondrial content mixing and organelle homeostasis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Shunshi Kohyama & Adrián Merino-Salomón & Petra Schwille, 2022. "In vitro assembly, positioning and contraction of a division ring in minimal cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Chang Qiao & Yunmin Zeng & Quan Meng & Xingye Chen & Haoyu Chen & Tao Jiang & Rongfei Wei & Jiabao Guo & Wenfeng Fu & Huaide Lu & Di Li & Yuwang Wang & Hui Qiao & Jiamin Wu & Dong Li & Qionghai Dai, 2024. "Zero-shot learning enables instant denoising and super-resolution in optical fluorescence microscopy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Shunshi Kohyama & Béla P. Frohn & Leon Babl & Petra Schwille, 2024. "Machine learning-aided design and screening of an emergent protein function in synthetic cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Ana Teresa López-Jiménez & Serge Mostowy, 2021. "Emerging technologies and infection models in cellular microbiology," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49412-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.