IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46640-x.html
   My bibliography  Save this article

Ferroelectric compute-in-memory annealer for combinatorial optimization problems

Author

Listed:
  • Xunzhao Yin

    (Zhejiang University
    Key Laboratory of CS&AUS of Zhejiang Province)

  • Yu Qian

    (Zhejiang University)

  • Alptekin Vardar

    (Fraunhofer IPMS)

  • Marcel Günther

    (Fraunhofer IPMS)

  • Franz Müller

    (Fraunhofer IPMS)

  • Nellie Laleni

    (Fraunhofer IPMS)

  • Zijian Zhao

    (University of Notre Dame)

  • Zhouhang Jiang

    (University of Notre Dame)

  • Zhiguo Shi

    (Zhejiang University
    Key Laboratory of CS&AUS of Zhejiang Province)

  • Yiyu Shi

    (University of Notre Dame)

  • Xiao Gong

    (National University of Singapore)

  • Cheng Zhuo

    (Zhejiang University
    Key Laboratory of CS&AUS of Zhejiang Province)

  • Thomas Kämpfe

    (Fraunhofer IPMS)

  • Kai Ni

    (University of Notre Dame)

Abstract

Computationally hard combinatorial optimization problems (COPs) are ubiquitous in many applications. Various digital annealers, dynamical Ising machines, and quantum/photonic systems have been developed for solving COPs, but they still suffer from the memory access issue, scalability, restricted applicability to certain types of COPs, and VLSI-incompatibility, respectively. Here we report a ferroelectric field effect transistor (FeFET) based compute-in-memory (CiM) annealer for solving larger-scale COPs efficiently. Our CiM annealer converts COPs into quadratic unconstrained binary optimization (QUBO) formulations, and uniquely accelerates in-situ the core vector-matrix-vector (VMV) multiplication operations of QUBO formulations in a single step. Specifically, the three-terminal FeFET structure allows for lossless compression of the stored QUBO matrix, achieving a remarkably 75% chip size saving when solving Max-Cut problems. A multi-epoch simulated annealing (MESA) algorithm is proposed for efficient annealing, achieving up to 27% better solution and ~ 2X speedup than conventional simulated annealing. Experimental validation is performed using the first integrated FeFET chip on 28nm HKMG CMOS technology, indicating great promise of FeFET CiM array in solving general COPs.

Suggested Citation

  • Xunzhao Yin & Yu Qian & Alptekin Vardar & Marcel Günther & Franz Müller & Nellie Laleni & Zijian Zhao & Zhouhang Jiang & Zhiguo Shi & Yiyu Shi & Xiao Gong & Cheng Zhuo & Thomas Kämpfe & Kai Ni, 2024. "Ferroelectric compute-in-memory annealer for combinatorial optimization problems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46640-x
    DOI: 10.1038/s41467-024-46640-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46640-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46640-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gita Naseri & Mattheos A. G. Koffas, 2020. "Application of combinatorial optimization strategies in synthetic biology," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    2. Fred Glover & Gary Kochenberger & Rick Hennig & Yu Du, 2022. "Quantum bridge analytics I: a tutorial on formulating and using QUBO models," Annals of Operations Research, Springer, vol. 314(1), pages 141-183, July.
    3. Igor L. Markov, 2014. "Limits on fundamental limits to computation," Nature, Nature, vol. 512(7513), pages 147-154, August.
    4. Fabian Böhm & Guy Verschaffelt & Guy Van der Sande, 2019. "A poor man’s coherent Ising machine based on opto-electronic feedback systems for solving optimization problems," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    5. Sergio Boixo & Vadim N. Smelyanskiy & Alireza Shabani & Sergei V. Isakov & Mark Dykman & Vasil S. Denchev & Mohammad H. Amin & Anatoly Yu Smirnov & Masoud Mohseni & Hartmut Neven, 2016. "Computational multiqubit tunnelling in programmable quantum annealers," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    6. Francisco Barahona & Martin Grötschel & Michael Jünger & Gerhard Reinelt, 1988. "An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design," Operations Research, INFORMS, vol. 36(3), pages 493-513, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dell'Amico, Mauro & Trubian, Marco, 1998. "Solution of large weighted equicut problems," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 500-521, April.
    2. Gita Naseri, 2023. "A roadmap to establish a comprehensive platform for sustainable manufacturing of natural products in yeast," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Cheng Lu & Zhibin Deng, 2021. "A branch-and-bound algorithm for solving max-k-cut problem," Journal of Global Optimization, Springer, vol. 81(2), pages 367-389, October.
    4. Shenshen Gu & Yue Yang, 2020. "A Deep Learning Algorithm for the Max-Cut Problem Based on Pointer Network Structure with Supervised Learning and Reinforcement Learning Strategies," Mathematics, MDPI, vol. 8(2), pages 1-20, February.
    5. Jesús Fernández-Villaverde & Isaiah J. Hull, 2023. "Dynamic Programming on a Quantum Annealer: Solving the RBC Model," NBER Working Papers 31326, National Bureau of Economic Research, Inc.
    6. repec:dgr:rugsom:99a17 is not listed on IDEAS
    7. Gili Rosenberg & Mohammad Vazifeh & Brad Woods & Eldad Haber, 2016. "Building an iterative heuristic solver for a quantum annealer," Computational Optimization and Applications, Springer, vol. 65(3), pages 845-869, December.
    8. Pierre Fouilhoux & A. Mahjoub, 2012. "Solving VLSI design and DNA sequencing problems using bipartization of graphs," Computational Optimization and Applications, Springer, vol. 51(2), pages 749-781, March.
    9. Goldengorin, Boris & Ghosh, Diptesh, 2004. "A Multilevel Search Algorithm for the Maximization of Submodular Functions," Research Report 04A20, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    10. Hongwei Liu & Sanyang Liu & Fengmin Xu, 2003. "A Tight Semidefinite Relaxation of the MAX CUT Problem," Journal of Combinatorial Optimization, Springer, vol. 7(3), pages 237-245, September.
    11. Goldengorin, Boris & Tijssen, Gert A. & Tso, Michael, 1999. "The maximization of submodular functions : old and new proofs for the correctness of the dichotomy algorithm," Research Report 99A17, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    12. Wenxing Zhu & Geng Lin & M. M. Ali, 2013. "Max- k -Cut by the Discrete Dynamic Convexized Method," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 27-40, February.
    13. repec:dgr:rugsom:98a08 is not listed on IDEAS
    14. Bissan Ghaddar & Miguel Anjos & Frauke Liers, 2011. "A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem," Annals of Operations Research, Springer, vol. 188(1), pages 155-174, August.
    15. Fred Glover & Gary Kochenberger & Moses Ma & Yu Du, 2022. "Quantum Bridge Analytics II: QUBO-Plus, network optimization and combinatorial chaining for asset exchange," Annals of Operations Research, Springer, vol. 314(1), pages 185-212, July.
    16. Ling, Ai-Fan & Xu, Cheng-Xian & Xu, Feng-Min, 2009. "A discrete filled function algorithm embedded with continuous approximation for solving max-cut problems," European Journal of Operational Research, Elsevier, vol. 197(2), pages 519-531, September.
    17. Chuangchuang Sun, 2023. "A Customized ADMM Approach for Large-Scale Nonconvex Semidefinite Programming," Mathematics, MDPI, vol. 11(21), pages 1-27, October.
    18. F. Liers & G. Pardella, 2012. "Partitioning planar graphs: a fast combinatorial approach for max-cut," Computational Optimization and Applications, Springer, vol. 51(1), pages 323-344, January.
    19. Chao Yun & Zhongyu Liang & Aleš Hrabec & Zhentao Liu & Mantao Huang & Leran Wang & Yifei Xiao & Yikun Fang & Wei Li & Wenyun Yang & Yanglong Hou & Jinbo Yang & Laura J. Heyderman & Pietro Gambardella , 2023. "Electrically programmable magnetic coupling in an Ising network exploiting solid-state ionic gating," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Madlener, Reinhard & Sheykhha, Siamak & Briglauer, Wolfgang, 2022. "The electricity- and CO2-saving potentials offered by regulation of European video-streaming services," Energy Policy, Elsevier, vol. 161(C).
    21. Mahmoud Darwish & Péter Neumann & János Mizsei & László Pohl, 2020. "Electro-Thermal Simulation of Vertical VO 2 Thermal-Electronic Circuit Elements," Energies, MDPI, vol. 13(13), pages 1-15, July.
    22. Vilmar Jefté Rodrigues de Sousa & Miguel F. Anjos & Sébastien Le Digabel, 2019. "Improving the linear relaxation of maximum k-cut with semidefinite-based constraints," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 123-151, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46640-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.