IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11484-3.html
   My bibliography  Save this article

A poor man’s coherent Ising machine based on opto-electronic feedback systems for solving optimization problems

Author

Listed:
  • Fabian Böhm

    (Vrije Universiteit Brussel)

  • Guy Verschaffelt

    (Vrije Universiteit Brussel)

  • Guy Van der Sande

    (Vrije Universiteit Brussel)

Abstract

Coherent Ising machines (CIMs) constitute a promising approach to solve computationally hard optimization problems by mapping them to ground state searches of the Ising model and implementing them with optical artificial spin-networks. However, while CIMs promise speed-ups over conventional digital computers, they are still challenging to build and operate. Here, we propose and test a concept for a fully programmable CIM, which is based on opto-electronic oscillators subjected to self-feedback. Contrary to current CIM designs, the artificial spins are generated in a feedback induced bifurcation and encoded in the intensity of coherent states. This removes the necessity for nonlinear optical processes or large external cavities and offers significant advantages regarding stability, size and cost. We demonstrate a compact setup for solving MAXCUT optimization problems on regular and frustrated graphs with 100 spins and can report similar or better performance compared to CIMs based on degenerate optical parametric oscillators.

Suggested Citation

  • Fabian Böhm & Guy Verschaffelt & Guy Van der Sande, 2019. "A poor man’s coherent Ising machine based on opto-electronic feedback systems for solving optimization problems," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11484-3
    DOI: 10.1038/s41467-019-11484-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11484-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11484-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juntao Wang & Daniel Ebler & K. Y. Michael Wong & David Shui Wing Hui & Jie Sun, 2023. "Bifurcation behaviors shape how continuous physical dynamics solves discrete Ising optimization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Fabian Böhm & Diego Alonso-Urquijo & Guy Verschaffelt & Guy Van der Sande, 2022. "Noise-injected analog Ising machines enable ultrafast statistical sampling and machine learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Marcello Calvanese Strinati & Claudio Conti, 2022. "Multidimensional hyperspin machine," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Xunzhao Yin & Yu Qian & Alptekin Vardar & Marcel Günther & Franz Müller & Nellie Laleni & Zijian Zhao & Zhouhang Jiang & Zhiguo Shi & Yiyu Shi & Xiao Gong & Cheng Zhuo & Thomas Kämpfe & Kai Ni, 2024. "Ferroelectric compute-in-memory annealer for combinatorial optimization problems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11484-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.