IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52488-y.html
   My bibliography  Save this article

Computing high-degree polynomial gradients in memory

Author

Listed:
  • Tinish Bhattacharya

    (University of California at Santa Barbara)

  • George H. Hutchinson

    (University of California at Santa Barbara)

  • Giacomo Pedretti

    (Hewlett Packard Labs)

  • Xia Sheng

    (Hewlett Packard Labs)

  • Jim Ignowski

    (Hewlett Packard Labs)

  • Thomas Vaerenbergh

    (Hewlett Packard Labs)

  • Ray Beausoleil

    (Hewlett Packard Labs)

  • John Paul Strachan

    (Forschungszentrum Juelich GmbH
    RWTH Aachen University)

  • Dmitri B. Strukov

    (University of California at Santa Barbara)

Abstract

Specialized function gradient computing hardware could greatly improve the performance of state-of-the-art optimization algorithms. Prior work on such hardware, performed in the context of Ising Machines and related concepts, is limited to quadratic polynomials and not scalable to commonly used higher-order functions. Here, we propose an approach for massively parallel gradient calculations of high-degree polynomials, which is conducive to efficient mixed-signal in-memory computing circuit implementations and whose area scales proportionally with the product of the number of variables and terms in the function and, most importantly, independent of its degree. Two flavors of such an approach are proposed. The first is limited to binary-variable polynomials typical in combinatorial optimization problems, while the second type is broader at the cost of a more complex periphery. To validate the former approach, we experimentally demonstrated solving a small-scale third-order Boolean satisfiability problem based on integrated metal-oxide memristor crossbar circuits, with competitive heuristics algorithm. Simulation results for larger-scale, more practical problems show orders of magnitude improvements in area, speed and energy efficiency compared to the state-of-the-art. We discuss how our work could enable even higher-performance systems after co-designing algorithms to exploit massively parallel gradient computation.

Suggested Citation

  • Tinish Bhattacharya & George H. Hutchinson & Giacomo Pedretti & Xia Sheng & Jim Ignowski & Thomas Vaerenbergh & Ray Beausoleil & John Paul Strachan & Dmitri B. Strukov, 2024. "Computing high-degree polynomial gradients in memory," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52488-y
    DOI: 10.1038/s41467-024-52488-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52488-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52488-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mingrui Jiang & Keyi Shan & Chengping He & Can Li, 2023. "Efficient combinatorial optimization by quantum-inspired parallel annealing in analogue memristor crossbar," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Fred Glover & Gary Kochenberger & Rick Hennig & Yu Du, 2022. "Quantum bridge analytics I: a tutorial on formulating and using QUBO models," Annals of Operations Research, Springer, vol. 314(1), pages 141-183, July.
    3. Marcello Calvanese Strinati & Claudio Conti, 2022. "Multidimensional hyperspin machine," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. M. R. Mahmoodi & M. Prezioso & D. B. Strukov, 2019. "Versatile stochastic dot product circuits based on nonvolatile memories for high performance neurocomputing and neurooptimization," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Srijan Nikhar & Sidharth Kannan & Navid Anjum Aadit & Shuvro Chowdhury & Kerem Y. Camsari, 2024. "All-to-all reconfigurability with sparse and higher-order Ising machines," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Xunzhao Yin & Yu Qian & Alptekin Vardar & Marcel Günther & Franz Müller & Nellie Laleni & Zijian Zhao & Zhouhang Jiang & Zhiguo Shi & Yiyu Shi & Xiao Gong & Cheng Zhuo & Thomas Kämpfe & Kai Ni, 2024. "Ferroelectric compute-in-memory annealer for combinatorial optimization problems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Fred Glover & Gary Kochenberger & Moses Ma & Yu Du, 2022. "Quantum Bridge Analytics II: QUBO-Plus, network optimization and combinatorial chaining for asset exchange," Annals of Operations Research, Springer, vol. 314(1), pages 185-212, July.
    4. Mingrui Jiang & Keyi Shan & Chengping He & Can Li, 2023. "Efficient combinatorial optimization by quantum-inspired parallel annealing in analogue memristor crossbar," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. S. Bianchi & I. Muñoz-Martin & E. Covi & A. Bricalli & G. Piccolboni & A. Regev & G. Molas & J. F. Nodin & F. Andrieu & D. Ielmini, 2023. "A self-adaptive hardware with resistive switching synapses for experience-based neurocomputing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52488-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.