IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v197y2009i2p519-531.html
   My bibliography  Save this article

A discrete filled function algorithm embedded with continuous approximation for solving max-cut problems

Author

Listed:
  • Ling, Ai-Fan
  • Xu, Cheng-Xian
  • Xu, Feng-Min

Abstract

In this paper, a discrete filled function algorithm embedded with continuous approximation is proposed to solve max-cut problems. A new discrete filled function is defined for max-cut problems, and properties of the function are studied. In the process of finding an approximation to the global solution of a max-cut problem, a continuation optimization algorithm is employed to find local solutions of a continuous relaxation of the max-cut problem, and then global searches are performed by minimizing the proposed filled function. Unlike general filled function methods, characteristics of max-cut problems are used. The parameters in the proposed filled function need not to be adjusted and are exactly the same for all max-cut problems that greatly increases the efficiency of the filled function method. Numerical results and comparisons on some well known max-cut test problems show that the proposed algorithm is efficient to get approximate global solutions of max-cut problems.

Suggested Citation

  • Ling, Ai-Fan & Xu, Cheng-Xian & Xu, Feng-Min, 2009. "A discrete filled function algorithm embedded with continuous approximation for solving max-cut problems," European Journal of Operational Research, Elsevier, vol. 197(2), pages 519-531, September.
  • Handle: RePEc:eee:ejores:v:197:y:2009:i:2:p:519-531
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00588-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(5), pages 777-788, October.
    2. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(1), pages 151-160, February.
    3. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(3), pages 427-432, June.
    4. Chengxian Xu & Jianzhong Zhang, 2001. "A Survey of Quasi-Newton Equations and Quasi-Newton Methods for Optimization," Annals of Operations Research, Springer, vol. 103(1), pages 213-234, March.
    5. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(4), pages 629-637, August.
    6. Francisco Barahona & Martin Grötschel & Michael Jünger & Gerhard Reinelt, 1988. "An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design," Operations Research, INFORMS, vol. 36(3), pages 493-513, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geng Lin & Wenxing Zhu, 2012. "A discrete dynamic convexized method for the max-cut problem," Annals of Operations Research, Springer, vol. 196(1), pages 371-390, July.
    2. Wenxing Zhu & Geng Lin & M. M. Ali, 2013. "Max- k -Cut by the Discrete Dynamic Convexized Method," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 27-40, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof S. Targiel & Maciej Nowak & Tadeusz Trzaskalik, 2018. "Scheduling non-critical activities using multicriteria approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 585-598, September.
    2. Okitonyumbe Y.F., Joseph & Ulungu, Berthold E.-L., 2013. "Nouvelle caractérisation des solutions efficaces des problèmes d’optimisation combinatoire multi-objectif [New characterization of efficient solution in multi-objective combinatorial optimization]," MPRA Paper 66123, University Library of Munich, Germany.
    3. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    4. Monica Motta & Caterina Sartori, 2020. "Normality and Nondegeneracy of the Maximum Principle in Optimal Impulsive Control Under State Constraints," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 44-71, April.
    5. Chenchen Wu & Dachuan Xu & Donglei Du & Wenqing Xu, 2016. "An approximation algorithm for the balanced Max-3-Uncut problem using complex semidefinite programming rounding," Journal of Combinatorial Optimization, Springer, vol. 32(4), pages 1017-1035, November.
    6. Uzma Ashraf & Hassan Ali & Muhammad Nawaz Chaudry & Irfan Ashraf & Adila Batool & Zafeer Saqib, 2016. "Predicting the Potential Distribution of Olea ferruginea in Pakistan incorporating Climate Change by Using Maxent Model," Sustainability, MDPI, vol. 8(8), pages 1-11, July.
    7. World Bank, 2003. "Argentina : Reforming Policies and Institutions for Efficiency and Equity of Public Expenditures," World Bank Publications - Reports 14637, The World Bank Group.
    8. Brown, Jeffrey R., 2001. "Private pensions, mortality risk, and the decision to annuitize," Journal of Public Economics, Elsevier, vol. 82(1), pages 29-62, October.
    9. Mark Christensen, 2007. "What We Might Know (But Aren't Sure) About Public-Sector Accrual Accounting," Australian Accounting Review, CPA Australia, vol. 17(41), pages 51-65, March.
    10. Wong, Patricia J.Y., 2015. "Eigenvalues of a general class of boundary value problem with derivative-dependent nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 908-930.
    11. Norma M Rantisi & Deborah Leslie, 2021. "In and against the neoliberal state? The precarious siting of work integration social enterprises (WISEs) as counter-movement in Montreal, Quebec," Environment and Planning A, , vol. 53(2), pages 349-370, March.
    12. Brunekreeft, Gert, 2004. "Market-based investment in electricity transmission networks: controllable flow," Utilities Policy, Elsevier, vol. 12(4), pages 269-281, December.
    13. Dias, Luis C. & Lamboray, Claude, 2010. "Extensions of the prudence principle to exploit a valued outranking relation," European Journal of Operational Research, Elsevier, vol. 201(3), pages 828-837, March.
    14. Oloruntoba, Richard, 2010. "An analysis of the Cyclone Larry emergency relief chain: Some key success factors," International Journal of Production Economics, Elsevier, vol. 126(1), pages 85-101, July.
    15. Chein-Shan Liu & Zhuojia Fu & Chung-Lun Kuo, 2017. "Directional Method of Fundamental Solutions for Three-dimensional Laplace Equation," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 9(6), pages 112-123, December.
    16. Schulze, Eberhard & Tillack, Peter & Patlassov, Oleg, 2002. "Einflussfaktoren Auf Gewinn Und Rentabilität Landwirtschaftlicher Großbetriebe Gebiet Omsk, Russland," IAMO Discussion Papers 14919, Institute of Agricultural Development in Transition Economies (IAMO).
    17. Yao Wu & David Levinson, 2005. "The Rational Locator Reexamined," Working Papers 200503, University of Minnesota: Nexus Research Group.
    18. Kameng Nip & Zhenbo Wang & Zizhuo Wang, 2021. "Assortment Optimization under a Single Transition Choice Model," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2122-2142, July.
    19. B. S. C. Campello & C. T. L. S. Ghidini & A. O. C. Ayres & W. A. Oliveira, 2022. "A residual recombination heuristic for one-dimensional cutting stock problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 194-220, April.
    20. Koijen, R.S.J. & Nijman, T.E. & Werker, B.J.M., 2006. "Optimal Portfolio Choice with Annuitization," Discussion Paper 2006-78, Tilburg University, Center for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:197:y:2009:i:2:p:519-531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.