IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46488-1.html
   My bibliography  Save this article

Neural timescales reflect behavioral demands in freely moving rhesus macaques

Author

Listed:
  • Ana M. G. Manea

    (University of Minnesota
    University of Minnesota)

  • David J.-N. Maisson

    (University of Minnesota)

  • Benjamin Voloh

    (University of Minnesota)

  • Anna Zilverstand

    (University of Minnesota)

  • Benjamin Hayden

    (Baylor College of Medicine)

  • Jan Zimmermann

    (University of Minnesota
    University of Minnesota)

Abstract

Previous work demonstrated a highly reproducible cortical hierarchy of neural timescales at rest, with sensory areas displaying fast, and higher-order association areas displaying slower timescales. The question arises how such stable hierarchies give rise to adaptive behavior that requires flexible adjustment of temporal coding and integration demands. Potentially, this lack of variability in the hierarchical organization of neural timescales could reflect the structure of the laboratory contexts. We posit that unconstrained paradigms are ideal to test whether the dynamics of neural timescales reflect behavioral demands. Here we measured timescales of local field potential activity while male rhesus macaques foraged in an open space. We found a hierarchy of neural timescales that differs from previous work. Importantly, although the magnitude of neural timescales expanded with task engagement, the brain areas’ relative position in the hierarchy was stable. Next, we demonstrated that the change in neural timescales is dynamic and contains functionally-relevant information, differentiating between similar events in terms of motor demands and associated reward. Finally, we demonstrated that brain areas are differentially affected by these behavioral demands. These results demonstrate that while the space of neural timescales is anatomically constrained, the observed hierarchical organization and magnitude is dependent on behavioral demands.

Suggested Citation

  • Ana M. G. Manea & David J.-N. Maisson & Benjamin Voloh & Anna Zilverstand & Benjamin Hayden & Jan Zimmermann, 2024. "Neural timescales reflect behavioral demands in freely moving rhesus macaques," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46488-1
    DOI: 10.1038/s41467-024-46488-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46488-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46488-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roxana Zeraati & Yan-Liang Shi & Nicholas A. Steinmetz & Marc A. Gieselmann & Alexander Thiele & Tirin Moore & Anna Levina & Tatiana A. Engel, 2023. "Intrinsic timescales in the visual cortex change with selective attention and reflect spatial connectivity," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Caroline A. Runyan & Eugenio Piasini & Stefano Panzeri & Christopher D. Harvey, 2017. "Distinct timescales of population coding across cortex," Nature, Nature, vol. 548(7665), pages 92-96, August.
    3. Nikos K. Logothetis & Jon Pauls & Mark Augath & Torsten Trinath & Axel Oeltermann, 2001. "Neurophysiological investigation of the basis of the fMRI signal," Nature, Nature, vol. 412(6843), pages 150-157, July.
    4. D. F. Wasmuht & E. Spaak & T. J. Buschman & E. K. Miller & M. G. Stokes, 2018. "Intrinsic neuronal dynamics predict distinct functional roles during working memory," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    5. Praneet C. Bala & Benjamin R. Eisenreich & Seng Bum Michael Yoo & Benjamin Y. Hayden & Hyun Soo Park & Jan Zimmermann, 2020. "Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    6. Jan Zimmermann & Paul W. Glimcher & Kenway Louie, 2018. "Multiple timescales of normalized value coding underlie adaptive choice behavior," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan-Yu Shih & Hsiang-Yu Yu & Cheng-Chia Lee & Chien-Chen Chou & Chien Chen & Paul W. Glimcher & Shih-Wei Wu, 2023. "Electrophysiological population dynamics reveal context dependencies during decision making in human frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    2. Roxana Zeraati & Yan-Liang Shi & Nicholas A. Steinmetz & Marc A. Gieselmann & Alexander Thiele & Tirin Moore & Anna Levina & Tatiana A. Engel, 2023. "Intrinsic timescales in the visual cortex change with selective attention and reflect spatial connectivity," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Lucas Rudelt & Daniel González Marx & Michael Wibral & Viola Priesemann, 2021. "Embedding optimization reveals long-lasting history dependence in neural spiking activity," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-51, June.
    4. Doungmo Goufo, Emile F. & Mbehou, Mohamed & Kamga Pene, Morgan M., 2018. "A peculiar application of Atangana–Baleanu fractional derivative in neuroscience: Chaotic burst dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 170-176.
    5. Irene Neuner & Wolfram Kawohl & Jorge Arrubla & Tracy Warbrick & Konrad Hitz & Christine Wyss & Frank Boers & N Jon Shah, 2014. "Cortical Response Variation with Different Sound Pressure Levels: A Combined Event-Related Potentials and fMRI Study," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-14, October.
    6. Zvi N. Roth & Kendrick Kay & Elisha P. Merriam, 2022. "Natural scene sampling reveals reliable coarse-scale orientation tuning in human V1," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Phoebe Koundouri & Barbara Hammer & Ulrike Kuhl & Alina Velias, 2022. "Behavioral and Neuroeconomics of Environmental Values," DEOS Working Papers 2227, Athens University of Economics and Business.
    8. Simon A Overduin & Philip Servos, 2008. "Symmetric Sensorimotor Somatotopy," PLOS ONE, Public Library of Science, vol. 3(1), pages 1-6, January.
    9. Masakazu Agetsuma & Issei Sato & Yasuhiro R. Tanaka & Luis Carrillo-Reid & Atsushi Kasai & Atsushi Noritake & Yoshiyuki Arai & Miki Yoshitomo & Takashi Inagaki & Hiroshi Yukawa & Hitoshi Hashimoto & J, 2023. "Activity-dependent organization of prefrontal hub-networks for associative learning and signal transformation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    10. Ryan Webb & Paul W. Glimcher & Kenway Louie, 2021. "The Normalization of Consumer Valuations: Context-Dependent Preferences from Neurobiological Constraints," Management Science, INFORMS, vol. 67(1), pages 93-125, January.
    11. Amrita Pal & Jennifer A Ogren & Ravi S Aysola & Rajesh Kumar & Luke A Henderson & Ronald M Harper & Paul M Macey, 2021. "Insular functional organization during handgrip in females and males with obstructive sleep apnea," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-22, February.
    12. Gavin Perry & Nathan W Taylor & Philippa C H Bothwell & Colette C Milbourn & Georgina Powell & Krish D Singh, 2020. "The gamma response to colour hue in humans: Evidence from MEG," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-21, December.
    13. Olsen, Carmen & Gold, Anna, 2018. "Future research directions at the intersection between cognitive neuroscience research and auditors’ professional skepticism," Journal of Accounting Literature, Elsevier, vol. 41(C), pages 127-141.
    14. Ujwal Chaudhary & Bin Xia & Stefano Silvoni & Leonardo G Cohen & Niels Birbaumer, 2017. "Brain–Computer Interface–Based Communication in the Completely Locked-In State," PLOS Biology, Public Library of Science, vol. 15(1), pages 1-25, January.
    15. Chaogan Yan & Dongqiang Liu & Yong He & Qihong Zou & Chaozhe Zhu & Xinian Zuo & Xiangyu Long & Yufeng Zang, 2009. "Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-11, May.
    16. Laurens Winkelmeier & Carla Filosa & Renée Hartig & Max Scheller & Markus Sack & Jonathan R. Reinwald & Robert Becker & David Wolf & Martin Fungisai Gerchen & Alexander Sartorius & Andreas Meyer-Linde, 2022. "Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    17. Ani Eloyan & Shanshan Li & John Muschelli & Jim J Pekar & Stewart H Mostofsky & Brian S Caffo, 2014. "Analytic Programming with fMRI Data: A Quick-Start Guide for Statisticians Using R," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-13, February.
    18. Liang An & Jilong Ren & Tao Yu & Tang Hai & Yichang Jia & Yebin Liu, 2023. "Three-dimensional surface motion capture of multiple freely moving pigs using MAMMAL," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Shaokai Ye & Anastasiia Filippova & Jessy Lauer & Steffen Schneider & Maxime Vidal & Tian Qiu & Alexander Mathis & Mackenzie Weygandt Mathis, 2024. "SuperAnimal pretrained pose estimation models for behavioral analysis," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    20. Ai-Ling Hsu & Kun-Hsien Chou & Yi-Ping Chao & Hsin-Ya Fan & Changwei W Wu & Jyh-Horng Chen, 2016. "Physiological Contribution in Spontaneous Oscillations: An Approximate Quality-Assurance Index for Resting-State fMRI Signals," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46488-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.