IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18441-5.html
   My bibliography  Save this article

Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio

Author

Listed:
  • Praneet C. Bala

    (University of Minnesota)

  • Benjamin R. Eisenreich

    (University of Minnesota)

  • Seng Bum Michael Yoo

    (University of Minnesota)

  • Benjamin Y. Hayden

    (University of Minnesota
    University of Minnesota
    University of Minnesota)

  • Hyun Soo Park

    (University of Minnesota)

  • Jan Zimmermann

    (University of Minnesota
    University of Minnesota
    University of Minnesota)

Abstract

The rhesus macaque is an important model species in several branches of science, including neuroscience, psychology, ethology, and medicine. The utility of the macaque model would be greatly enhanced by the ability to precisely measure behavior in freely moving conditions. Existing approaches do not provide sufficient tracking. Here, we describe OpenMonkeyStudio, a deep learning-based markerless motion capture system for estimating 3D pose in freely moving macaques in large unconstrained environments. Our system makes use of 62 machine vision cameras that encircle an open 2.45 m × 2.45 m × 2.75 m enclosure. The resulting multiview image streams allow for data augmentation via 3D-reconstruction of annotated images to train a robust view-invariant deep neural network. This view invariance represents an important advance over previous markerless 2D tracking approaches, and allows fully automatic pose inference on unconstrained natural motion. We show that OpenMonkeyStudio can be used to accurately recognize actions and track social interactions.

Suggested Citation

  • Praneet C. Bala & Benjamin R. Eisenreich & Seng Bum Michael Yoo & Benjamin Y. Hayden & Hyun Soo Park & Jan Zimmermann, 2020. "Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18441-5
    DOI: 10.1038/s41467-020-18441-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18441-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18441-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana M. G. Manea & David J.-N. Maisson & Benjamin Voloh & Anna Zilverstand & Benjamin Hayden & Jan Zimmermann, 2024. "Neural timescales reflect behavioral demands in freely moving rhesus macaques," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Liang An & Jilong Ren & Tao Yu & Tang Hai & Yichang Jia & Yebin Liu, 2023. "Three-dimensional surface motion capture of multiple freely moving pigs using MAMMAL," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Daniel J. Butler & Alexander P. Keim & Shantanu Ray & Eiman Azim, 2023. "Large-scale capture of hidden fluorescent labels for training generalizable markerless motion capture models," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Shaokai Ye & Anastasiia Filippova & Jessy Lauer & Steffen Schneider & Maxime Vidal & Tian Qiu & Alexander Mathis & Mackenzie Weygandt Mathis, 2024. "SuperAnimal pretrained pose estimation models for behavioral analysis," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18441-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.