IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46302-y.html
   My bibliography  Save this article

bacLIFE: a user-friendly computational workflow for genome analysis and prediction of lifestyle-associated genes in bacteria

Author

Listed:
  • Guillermo Guerrero-Egido

    (Leiden University
    Netherlands Institute of Ecology (NIOO-KNAW)
    Campus Universitario de Teatinos s/n, Universidad de Málaga
    Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC))

  • Adrian Pintado

    (Leiden University
    Campus Universitario de Teatinos s/n, Universidad de Málaga
    Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC))

  • Kevin M. Bretscher

    (Leiden University
    Netherlands Institute of Ecology (NIOO-KNAW)
    Campus Universitario de Teatinos s/n, Universidad de Málaga
    Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC))

  • Luisa-Maria Arias-Giraldo

    (Netherlands Institute of Ecology (NIOO-KNAW))

  • Joseph N. Paulson

    (N-Power Medicine)

  • Herman P. Spaink

    (Leiden University)

  • Dennis Claessen

    (Leiden University)

  • Cayo Ramos

    (Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC)
    Campus Universitario de Teatinos s/n, Universidad de Málaga)

  • Francisco M. Cazorla

    (Campus Universitario de Teatinos s/n, Universidad de Málaga
    Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC))

  • Marnix H. Medema

    (Leiden University
    Wageningen University)

  • Jos M. Raaijmakers

    (Leiden University
    Netherlands Institute of Ecology (NIOO-KNAW))

  • Víctor J. Carrión

    (Leiden University
    Netherlands Institute of Ecology (NIOO-KNAW)
    Campus Universitario de Teatinos s/n, Universidad de Málaga
    Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC))

Abstract

Bacteria have an extensive adaptive ability to live in close association with eukaryotic hosts, exhibiting detrimental, neutral or beneficial effects on host growth and health. However, the genes involved in niche adaptation are mostly unknown and their functions poorly characterized. Here, we present bacLIFE ( https://github.com/Carrion-lab/bacLIFE ) a streamlined computational workflow for genome annotation, large-scale comparative genomics, and prediction of lifestyle-associated genes (LAGs). As a proof of concept, we analyzed 16,846 genomes from the Burkholderia/Paraburkholderia and Pseudomonas genera, which led to the identification of hundreds of genes potentially associated with a plant pathogenic lifestyle. Site-directed mutagenesis of 14 of these predicted LAGs of unknown function, followed by plant bioassays, showed that 6 predicted LAGs are indeed involved in the phytopathogenic lifestyle of Burkholderia plantarii and Pseudomonas syringae pv. phaseolicola. These 6 LAGs encompassed a glycosyltransferase, extracellular binding proteins, homoserine dehydrogenases and hypothetical proteins. Collectively, our results highlight bacLIFE as an effective computational tool for prediction of LAGs and the generation of hypotheses for a better understanding of bacteria-host interactions.

Suggested Citation

  • Guillermo Guerrero-Egido & Adrian Pintado & Kevin M. Bretscher & Luisa-Maria Arias-Giraldo & Joseph N. Paulson & Herman P. Spaink & Dennis Claessen & Cayo Ramos & Francisco M. Cazorla & Marnix H. Mede, 2024. "bacLIFE: a user-friendly computational workflow for genome analysis and prediction of lifestyle-associated genes in bacteria," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46302-y
    DOI: 10.1038/s41467-024-46302-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46302-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46302-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin Steinegger & Johannes Söding, 2018. "Clustering huge protein sequence sets in linear time," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Nathan Blow, 2008. "Exploring unseen communities," Nature, Nature, vol. 453(7195), pages 687-689, May.
    3. Christian Jenul & Simon Sieber & Christophe Daeppen & Anugraha Mathew & Martina Lardi & Gabriella Pessi & Dominic Hoepfner & Markus Neuburger & Anthony Linden & Karl Gademann & Leo Eberl, 2018. "Biosynthesis of fragin is controlled by a novel quorum sensing signal," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    4. Erik J. Hasenoehrl & Dannah Rae Sajorda & Linda Berney-Meyer & Samantha Johnson & JoAnn M. Tufariello & Tobias Fuhrer & Gregory M. Cook & William R. Jacobs & Michael Berney, 2019. "Derailing the aspartate pathway of Mycobacterium tuberculosis to eradicate persistent infection," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    5. Da-Ran Kim & Gyeongjun Cho & Chang-Wook Jeon & David M. Weller & Linda S. Thomashow & Timothy C. Paulitz & Youn-Sig Kwak, 2019. "A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    6. Francesco Asnicar & Andrew Maltez Thomas & Francesco Beghini & Claudia Mengoni & Serena Manara & Paolo Manghi & Qiyun Zhu & Mattia Bolzan & Fabio Cumbo & Uyen May & Jon G. Sanders & Moreno Zolfo & Evg, 2020. "Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Ma & Caiyu Lu & Yiling Wang & Jingwen Yu & Kankan Zhao & Ran Xue & Hao Ren & Xiaofei Lv & Ronghui Pan & Jiabao Zhang & Yongguan Zhu & Jianming Xu, 2023. "A genomic catalogue of soil microbiomes boosts mining of biodiversity and genetic resources," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Shanlin Ke & Scott T. Weiss & Yang-Yu Liu, 2022. "Dissecting the role of the human microbiome in COVID-19 via metagenome-assembled genomes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Peicong Lin & Yumeng Yan & Huanyu Tao & Sheng-You Huang, 2023. "Deep transfer learning for inter-chain contact predictions of transmembrane protein complexes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Cameron Martino & Livia S. Zaramela & Bei Gao & Mallory Embree & Janna Tarasova & Seth J. Parker & Yanhan Wang & Huikuan Chu & Peng Chen & Kuei-Chuan Lee & Daniela Domingos Galzerani & Jivani M. Genga, 2022. "Acetate reprograms gut microbiota during alcohol consumption," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Haoyu Lang & Yuwen Liu & Huijuan Duan & Wenhao Zhang & Xiaosong Hu & Hao Zheng, 2023. "Identification of peptides from honeybee gut symbionts as potential antimicrobial agents against Melissococcus plutonius," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Minghui Cheng & Yingjie Xu & Xiao Cui & Xin Wei & Yundi Chang & Jun Xu & Cheng Lei & Lei Xue & Yifan Zheng & Zhang Wang & Lingtong Huang & Min Zheng & Hong Luo & Yuxin Leng & Chao Jiang, 2024. "Deep longitudinal lower respiratory tract microbiome profiling reveals genome-resolved functional and evolutionary dynamics in critical illness," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Rubén Barcia-Cruz & David Goudenège & Jorge A. Moura de Sousa & Damien Piel & Martial Marbouty & Eduardo P. C. Rocha & Frédérique Roux, 2024. "Phage-inducible chromosomal minimalist islands (PICMIs), a novel family of small marine satellites of virulent phages," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Yiqian Duan & Célio Dias Santos-Júnior & Thomas Sebastian Schmidt & Anthony Fullam & Breno L. S. Almeida & Chengkai Zhu & Michael Kuhn & Xing-Ming Zhao & Peer Bork & Luis Pedro Coelho, 2024. "A catalog of small proteins from the global microbiome," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Mirjana Domazet-Lošo & Tin Široki & Korina Šimičević & Tomislav Domazet-Lošo, 2024. "Macroevolutionary dynamics of gene family gain and loss along multicellular eukaryotic lineages," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    10. Patrick Bryant & Frank Noé, 2024. "Structure prediction of alternative protein conformations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Alice Risely & Arthur Newbury & Thibault Stalder & Benno I. Simmons & Eva M. Top & Angus Buckling & Dirk Sanders, 2024. "Host- plasmid network structure in wastewater is linked to antimicrobial resistance genes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. David Moi & Shunsuke Nishio & Xiaohui Li & Clari Valansi & Mauricio Langleib & Nicolas G. Brukman & Kateryna Flyak & Christophe Dessimoz & Daniele de Sanctis & Kathryn Tunyasuvunakool & John Jumper & , 2022. "Discovery of archaeal fusexins homologous to eukaryotic HAP2/GCS1 gamete fusion proteins," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Shuqi Qin & Dianye Zhang & Bin Wei & Yuanhe Yang, 2024. "Dual roles of microbes in mediating soil carbon dynamics in response to warming," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Jeffrey A. Ruffolo & Lee-Shin Chu & Sai Pooja Mahajan & Jeffrey J. Gray, 2023. "Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Liyun An & Xinwu Liu & Jianwei Wang & Jinbo Xu & Xiaoli Chen & Xiaonan Liu & Bingxin Hu & Yong Nie & Xiao-Lei Wu, 2024. "Global diversity and ecological functions of viruses inhabiting oil reservoirs," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Ivan Koludarov & Tobias Senoner & Timothy N. W. Jackson & Daniel Dashevsky & Michael Heinzinger & Steven D. Aird & Burkhard Rost, 2023. "Domain loss enabled evolution of novel functions in the snake three-finger toxin gene superfamily," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Erik Wright, 2024. "Accurately clustering biological sequences in linear time by relatedness sorting," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Julia Koehler Leman & Pawel Szczerbiak & P. Douglas Renfrew & Vladimir Gligorijevic & Daniel Berenberg & Tommi Vatanen & Bryn C. Taylor & Chris Chandler & Stefan Janssen & Andras Pataki & Nick Carrier, 2023. "Sequence-structure-function relationships in the microbial protein universe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Junhui Peng & Li Zhao, 2024. "The origin and structural evolution of de novo genes in Drosophila," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Casey N. Grun & Ruchi Jain & Maren Schniederberend & Charles B. Shoemaker & Bryce Nelson & Barbara I. Kazmierczak, 2024. "Bacterial cell surface characterization by phage display coupled to high-throughput sequencing," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46302-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.