IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43352-6.html
   My bibliography  Save this article

Identification of peptides from honeybee gut symbionts as potential antimicrobial agents against Melissococcus plutonius

Author

Listed:
  • Haoyu Lang

    (China Agricultural University)

  • Yuwen Liu

    (China Agricultural University)

  • Huijuan Duan

    (China Agricultural University)

  • Wenhao Zhang

    (China Agricultural University)

  • Xiaosong Hu

    (China Agricultural University)

  • Hao Zheng

    (China Agricultural University)

Abstract

Eusocial pollinators are crucial elements in global agriculture. The honeybees and bumblebees are associated with a simple yet host-restricted gut community, which protect the hosts against pathogen infections. Recent genome mining has led to the discovery of biosynthesis pathways of bioactive natural products mediating microbe-microbe interactions from the gut microbiota. Here, we investigate the diversity of biosynthetic gene clusters in the bee gut microbiota by analyzing 477 genomes from cultivated bacteria and metagenome-assembled genomes. We identify 744 biosynthetic gene clusters (BGCs) covering multiple chemical classes. While gene clusters for the post-translationally modified peptides are widely distributed in the bee guts, the distribution of the BGC classes varies significantly in different bee species among geographic locations, which is attributed to the strain-level variation of bee gut members in the chemical repertoire. Interestingly, we find that Gilliamella strains possessing a thiopeptide-like BGC show potent activity against the pathogenic Melissococcus plutonius. The spectrometry-guided genome mining reveals a RiPP-encoding BGC from Gilliamella with a 10 amino acid-long core peptide exhibiting antibacterial potentials. This study illustrates the widespread small-molecule-encoding BGCs in the bee gut symbionts and provides insights into the bacteria-derived natural products as potential antimicrobial agents against pathogenic infections.

Suggested Citation

  • Haoyu Lang & Yuwen Liu & Huijuan Duan & Wenhao Zhang & Xiaosong Hu & Hao Zheng, 2023. "Identification of peptides from honeybee gut symbionts as potential antimicrobial agents against Melissococcus plutonius," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43352-6
    DOI: 10.1038/s41467-023-43352-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43352-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43352-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Haoyu Lang & Hao Wang & Haoqing Wang & Zhaopeng Zhong & Xianbing Xie & Wenhao Zhang & Jun Guo & Liang Meng & Xiaosong Hu & Xue Zhang & Hao Zheng, 2023. "Engineered symbiotic bacteria interfering Nosema redox system inhibit microsporidia parasitism in honeybees," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Francesco Asnicar & Andrew Maltez Thomas & Francesco Beghini & Claudia Mengoni & Serena Manara & Paolo Manghi & Qiyun Zhu & Mattia Bolzan & Fabio Cumbo & Uyen May & Jon G. Sanders & Moreno Zolfo & Evg, 2020. "Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Richard S. Ayikpoe & Chengyou Shi & Alexander J. Battiste & Sara M. Eslami & Sangeetha Ramesh & Max A. Simon & Ian R. Bothwell & Hyunji Lee & Andrew J. Rice & Hengqian Ren & Qiqi Tian & Lonnie A. Harr, 2022. "A scalable platform to discover antimicrobials of ribosomal origin," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Kirsten M. Ellegaard & Philipp Engel, 2019. "Genomic diversity landscape of the honey bee gut microbiota," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cameron Martino & Livia S. Zaramela & Bei Gao & Mallory Embree & Janna Tarasova & Seth J. Parker & Yanhan Wang & Huikuan Chu & Peng Chen & Kuei-Chuan Lee & Daniela Domingos Galzerani & Jivani M. Genga, 2022. "Acetate reprograms gut microbiota during alcohol consumption," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Alice Risely & Arthur Newbury & Thibault Stalder & Benno I. Simmons & Eva M. Top & Angus Buckling & Dirk Sanders, 2024. "Host- plasmid network structure in wastewater is linked to antimicrobial resistance genes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Trine Zachariasen & Jakob Russel & Charisse Petersen & Gisle A. Vestergaard & Shiraz Shah & Pablo Atienza Lopez & Moschoula Passali & Stuart E. Turvey & Søren J. Sørensen & Ole Lund & Jakob Stokholm &, 2024. "MAGinator enables accurate profiling of de novo MAGs with strain-level phylogenies," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Bin Ma & Caiyu Lu & Yiling Wang & Jingwen Yu & Kankan Zhao & Ran Xue & Hao Ren & Xiaofei Lv & Ronghui Pan & Jiabao Zhang & Yongguan Zhu & Jianming Xu, 2023. "A genomic catalogue of soil microbiomes boosts mining of biodiversity and genetic resources," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Guillermo Guerrero-Egido & Adrian Pintado & Kevin M. Bretscher & Luisa-Maria Arias-Giraldo & Joseph N. Paulson & Herman P. Spaink & Dennis Claessen & Cayo Ramos & Francisco M. Cazorla & Marnix H. Mede, 2024. "bacLIFE: a user-friendly computational workflow for genome analysis and prediction of lifestyle-associated genes in bacteria," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Sigal Leviatan & Saar Shoer & Daphna Rothschild & Maria Gorodetski & Eran Segal, 2022. "An expanded reference map of the human gut microbiome reveals hundreds of previously unknown species," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Shanlin Ke & Scott T. Weiss & Yang-Yu Liu, 2022. "Dissecting the role of the human microbiome in COVID-19 via metagenome-assembled genomes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Wan-Qiu Liu & Xiangyang Ji & Fang Ba & Yufei Zhang & Huiling Xu & Shuhui Huang & Xiao Zheng & Yifan Liu & Shengjie Ling & Michael C. Jewett & Jian Li, 2024. "Cell-free biosynthesis and engineering of ribosomally synthesized lanthipeptides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Liyun An & Xinwu Liu & Jianwei Wang & Jinbo Xu & Xiaoli Chen & Xiaonan Liu & Bingxin Hu & Yong Nie & Xiao-Lei Wu, 2024. "Global diversity and ecological functions of viruses inhabiting oil reservoirs," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Romuald Laso-Jadart & Christophe Ambroise & Pierre Peterlongo & Mohammed-Amin Madoui, 2020. "metaVaR: Introducing metavariant species models for reference-free metagenomic-based population genomics," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-17, December.
    11. Chrats Melkonian & Francisco Zorrilla & Inge Kjærbølling & Sonja Blasche & Daniel Machado & Mette Junge & Kim Ib Sørensen & Lene Tranberg Andersen & Kiran R. Patil & Ahmad A. Zeidan, 2023. "Microbial interactions shape cheese flavour formation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43352-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.