IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v546y2017i7657d10.1038_nature22386.html
   My bibliography  Save this article

RNA phase transitions in repeat expansion disorders

Author

Listed:
  • Ankur Jain

    (University of California
    Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory)

  • Ronald D. Vale

    (University of California
    Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory)

Abstract

Expansions of short nucleotide repeats produce several neurological and neuromuscular disorders including Huntington disease, muscular dystrophy, and amyotrophic lateral sclerosis. A common pathological feature of these diseases is the accumulation of the repeat-containing transcripts into aberrant foci in the nucleus. RNA foci, as well as the disease symptoms, only manifest above a critical number of nucleotide repeats, but the molecular mechanism governing foci formation above this characteristic threshold remains unresolved. Here we show that repeat expansions create templates for multivalent base-pairing, which causes purified RNA to undergo a sol–gel transition in vitro at a similar critical repeat number as observed in the diseases. In human cells, RNA foci form by phase separation of the repeat-containing RNA and can be dissolved by agents that disrupt RNA gelation in vitro. Analogous to protein aggregation disorders, our results suggest that the sequence-specific gelation of RNAs could be a contributing factor to neurological disease.

Suggested Citation

  • Ankur Jain & Ronald D. Vale, 2017. "RNA phase transitions in repeat expansion disorders," Nature, Nature, vol. 546(7657), pages 243-247, June.
  • Handle: RePEc:nat:nature:v:546:y:2017:i:7657:d:10.1038_nature22386
    DOI: 10.1038/nature22386
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature22386
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature22386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Momčilo Gavrilov & Joshua Y. C. Yang & Roger S. Zou & Wen Ma & Chun-Ying Lee & Sonisilpa Mohapatra & Jimin Kang & Ting-Wei Liao & Sua Myong & Taekjip Ha, 2022. "Engineered helicase replaces thermocycler in DNA amplification while retaining desired PCR characteristics," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Jaimie Marie Stewart & Shiyi Li & Anli A. Tang & Melissa Ann Klocke & Martin Vincent Gobry & Giacomo Fabrini & Lorenzo Michele & Paul W. K. Rothemund & Elisa Franco, 2024. "Modular RNA motifs for orthogonal phase separated compartments," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Riccardo Calandrelli & Xingzhao Wen & John Lalith Charles Richard & Zhifei Luo & Tri C. Nguyen & Chien-Ju Chen & Zhijie Qi & Shuanghong Xue & Weizhong Chen & Zhangming Yan & Weixin Wu & Kathia Zaleta-, 2023. "Genome-wide analysis of the interplay between chromatin-associated RNA and 3D genome organization in human cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Zhantao Shao & Jack Hu & Allison Jandura & Ronit Wilk & Matthew Jachimowicz & Lingfeng Ma & Chun Hu & Abby Sundquist & Indrani Das & Phillip Samuel-Larbi & Julie A. Brill & Henry M. Krause, 2024. "Spatially revealed roles for lncRNAs in Drosophila spermatogenesis, Y chromosome function and evolution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Sarah Rösing & Fabian Ullrich & Susann Meisterfeld & Franziska Schmidt & Laura Mlitzko & Marijana Croon & Ryan G Nattrass & Nadia Eberl & Julia Mahlberg & Martin Schlee & Anja Wieland & Philipp Simon , 2024. "Chronic endoplasmic reticulum stress in myotonic dystrophy type 2 promotes autoimmunity via mitochondrial DNA release," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Ofer Kimchi & Ella M. King & Michael P. Brenner, 2023. "Uncovering the mechanism for aggregation in repeat expanded RNA reveals a reentrant transition," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Damian Wollny & Benjamin Vernot & Jie Wang & Maria Hondele & Aram Safrastyan & Franziska Aron & Julia Micheel & Zhisong He & Anthony Hyman & Karsten Weis & J. Gray Camp & T.‐Y. Dora Tang & Barbara Tre, 2022. "Characterization of RNA content in individual phase-separated coacervate microdroplets," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Sudarsan Mugunthan & Lan Li Wong & Fernaldo Richtia Winnerdy & Stephen Summers & Muhammad Hafiz Ismail & Yong Hwee Foo & Tavleen Kaur Jaggi & Oliver W. Meldrum & Pei Yee Tiew & Sanjay H. Chotirmall & , 2023. "RNA is a key component of extracellular DNA networks in Pseudomonas aeruginosa biofilms," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Federica Raguseo & Yiran Wang & Jessica Li & Marija Petrić Howe & Rubika Balendra & Anouk Huyghebaert & Devkee M. Vadukul & Diana A. Tanase & Thomas E. Maher & Layla Malouf & Roger Rubio-Sánchez & Fra, 2023. "The ALS/FTD-related C9orf72 hexanucleotide repeat expansion forms RNA condensates through multimolecular G-quadruplexes," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Siddharth Agarwal & Dino Osmanovic & Mahdi Dizani & Melissa A. Klocke & Elisa Franco, 2024. "Dynamic control of DNA condensation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Clara Lopes Novo & Emily V. Wong & Colin Hockings & Chetan Poudel & Eleanor Sheekey & Meike Wiese & Hanneke Okkenhaug & Simon J. Boulton & Srinjan Basu & Simon Walker & Gabriele S. Kaminski Schierle &, 2022. "Satellite repeat transcripts modulate heterochromatin condensates and safeguard chromosome stability in mouse embryonic stem cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Brett M. O’Brien & Roumita Moulick & Gabriel Jiménez-Avalos & Nandakumar Rajasekaran & Christian M. Kaiser & Sarah A. Woodson, 2024. "Stick-slip unfolding favors self-association of expanded HTT mRNA," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Zhefan Stephen Chen & Mingxi Ou & Stephanie Taylor & Ruxandra Dafinca & Shaohong Isaac Peng & Kevin Talbot & Ho Yin Edwin Chan, 2023. "Mutant GGGGCC RNA prevents YY1 from binding to Fuzzy promoter which stimulates Wnt/β-catenin pathway in C9ALS/FTD," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:546:y:2017:i:7657:d:10.1038_nature22386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.