IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45535-1.html
   My bibliography  Save this article

Chronic endoplasmic reticulum stress in myotonic dystrophy type 2 promotes autoimmunity via mitochondrial DNA release

Author

Listed:
  • Sarah Rösing

    (University Hospital Carl Gustav Carus)

  • Fabian Ullrich

    (University Hospital Bonn
    University Hospital Bonn)

  • Susann Meisterfeld

    (University Hospital Carl Gustav Carus)

  • Franziska Schmidt

    (University Hospital Carl Gustav Carus)

  • Laura Mlitzko

    (University Hospital Carl Gustav Carus)

  • Marijana Croon

    (CECAD Research Center)

  • Ryan G Nattrass

    (University Hospital Bonn)

  • Nadia Eberl

    (University Hospital Carl Gustav Carus)

  • Julia Mahlberg

    (University Hospital Bonn)

  • Martin Schlee

    (University Hospital Bonn)

  • Anja Wieland

    (University Hospital Bonn)

  • Philipp Simon

    (University Hospital Bonn
    University Hospital Bonn)

  • Daniel Hilbig

    (University Hospital Bonn)

  • Ulrike Reuner

    (University Hospital Carl Gustav Carus)

  • Alexander Rapp

    (Technical University of Darmstadt)

  • Julia Bremser

    (University Hospital Bonn)

  • Peter Mirtschink

    (Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine)

  • Stephan Drukewitz

    (University of Leipzig Medical Center)

  • Thomas Zillinger

    (University Hospital Bonn)

  • Stefan Beissert

    (University Hospital Carl Gustav Carus)

  • Katrin Paeschke

    (University Hospital Bonn
    University Hospital Bonn)

  • Gunther Hartmann

    (University Hospital Bonn)

  • Aleksandra Trifunovic

    (CECAD Research Center)

  • Eva Bartok

    (University Hospital Bonn
    University Hospital Bonn
    Institute of Tropical Medicine)

  • Claudia Günther

    (University Hospital Carl Gustav Carus)

Abstract

Myotonic dystrophy type 2 (DM2) is a tetranucleotide CCTG repeat expansion disease associated with an increased prevalence of autoimmunity. Here, we identified an elevated type I interferon (IFN) signature in peripheral blood mononuclear cells and primary fibroblasts of DM2 patients as a trigger of chronic immune stimulation. Although RNA-repeat accumulation was prevalent in the cytosol of DM2-patient fibroblasts, type-I IFN release did not depend on innate RNA immune sensors but rather the DNA sensor cGAS and the prevalence of mitochondrial DNA (mtDNA) in the cytoplasm. Sublethal mtDNA release was promoted by a chronic activation of the ATF6 branch of the unfolded protein response (UPR) in reaction to RNA-repeat accumulation and non-AUG translated tetrapeptide expansion proteins. ATF6-dependent mtDNA release and resulting cGAS/STING activation could also be recapitulated in human THP-1 monocytes exposed to chronic endoplasmic reticulum (ER) stress. Altogether, our study demonstrates a novel mechanism by which large repeat expansions cause chronic endoplasmic reticulum stress and associated mtDNA leakage. This mtDNA is, in turn, sensed by the cGAS/STING pathway and induces a type-I IFN response predisposing to autoimmunity. Elucidating this pathway reveals new potential therapeutic targets for autoimmune disorders associated with repeat expansion diseases.

Suggested Citation

  • Sarah Rösing & Fabian Ullrich & Susann Meisterfeld & Franziska Schmidt & Laura Mlitzko & Marijana Croon & Ryan G Nattrass & Nadia Eberl & Julia Mahlberg & Martin Schlee & Anja Wieland & Philipp Simon , 2024. "Chronic endoplasmic reticulum stress in myotonic dystrophy type 2 promotes autoimmunity via mitochondrial DNA release," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45535-1
    DOI: 10.1038/s41467-024-45535-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45535-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45535-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julia Leitman & F. Ulrich Hartl & Gerardo Z. Lederkremer, 2013. "Soluble forms of polyQ-expanded huntingtin rather than large aggregates cause endoplasmic reticulum stress," Nature Communications, Nature, vol. 4(1), pages 1-10, December.
    2. A. Phillip West & William Khoury-Hanold & Matthew Staron & Michal C. Tal & Cristiana M. Pineda & Sabine M. Lang & Megan Bestwick & Brett A. Duguay & Nuno Raimundo & Donna A. MacDuff & Susan M. Kaech &, 2015. "Mitochondrial DNA stress primes the antiviral innate immune response," Nature, Nature, vol. 520(7548), pages 553-557, April.
    3. Ankur Jain & Ronald D. Vale, 2017. "RNA phase transitions in repeat expansion disorders," Nature, Nature, vol. 546(7657), pages 243-247, June.
    4. Simone M. Haag & Muhammet F. Gulen & Luc Reymond & Antoine Gibelin & Laurence Abrami & Alexiane Decout & Michael Heymann & F. Gisou van der Goot & Gerardo Turcatti & Rayk Behrendt & Andrea Ablasser, 2018. "Targeting STING with covalent small-molecule inhibitors," Nature, Nature, vol. 559(7713), pages 269-273, July.
    5. Markus Sauer & Stefan A. Juranek & James Marks & Alessio Magis & Hinke G. Kazemier & Daniel Hilbig & Daniel Benhalevy & Xiantao Wang & Markus Hafner & Katrin Paeschke, 2019. "DHX36 prevents the accumulation of translationally inactive mRNAs with G4-structures in untranslated regions," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    6. Nina A. Bonekamp & Bradley Peter & Hauke S. Hillen & Andrea Felser & Tim Bergbrede & Axel Choidas & Moritz Horn & Anke Unger & Raffaella Lucrezia & Ilian Atanassov & Xinping Li & Uwe Koch & Sascha Men, 2020. "Small-molecule inhibitors of human mitochondrial DNA transcription," Nature, Nature, vol. 588(7839), pages 712-716, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naijun Miao & Zhuning Wang & Qinlan Wang & Hongyan Xie & Ninghao Yang & Yanzhe Wang & Jin Wang & Haixia Kang & Wenjuan Bai & Yuanyuan Wang & Rui He & Kepeng Yan & Yang Wang & Qiongyi Hu & Zhaoyuan Liu, 2023. "Oxidized mitochondrial DNA induces gasdermin D oligomerization in systemic lupus erythematosus," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Maritza Puray-Chavez & Jenna E. Eschbach & Ming Xia & Kyle M. LaPak & Qianzi Zhou & Ria Jasuja & Jiehong Pan & Jian Xu & Zixiang Zhou & Shawn Mohammed & Qibo Wang & Dana Q. Lawson & Sanja Djokic & Gao, 2024. "A basally active cGAS-STING pathway limits SARS-CoV-2 replication in a subset of ACE2 positive airway cell models," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Andrea Irazoki & Isabel Gordaliza-Alaguero & Emma Frank & Nikolaos Nikiforos Giakoumakis & Jordi Seco & Manuel Palacín & Anna Gumà & Lykke Sylow & David Sebastián & Antonio Zorzano, 2023. "Disruption of mitochondrial dynamics triggers muscle inflammation through interorganellar contacts and mitochondrial DNA mislocation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Prakash Kharel & Marta Fay & Ekaterina V. Manasova & Paul J. Anderson & Alexander V. Kurkin & Junjie U. Guo & Pavel Ivanov, 2023. "Stress promotes RNA G-quadruplex folding in human cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Shane T. Killarney & Rachel Washart & Ryan S. Soderquist & Jacob P. Hoj & Jamie Lebhar & Kevin H. Lin & Kris C. Wood, 2023. "Executioner caspases restrict mitochondrial RNA-driven Type I IFN induction during chemotherapy-induced apoptosis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Merve Mutlu & Isabel Schmidt & Andrew I. Morrison & Benedikt Goretzki & Felix Freuler & Damien Begue & Oliver Simic & Nicolas Pythoud & Erik Ahrne & Sandra Kapps & Susan Roest & Debora Bonenfant & Del, 2024. "Small molecule induced STING degradation facilitated by the HECT ligase HERC4," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Zhibin Lin & Peijun Yang & Yufeng Hu & Hao Xu & Juanli Duan & Fei He & Kefeng Dou & Lin Wang, 2023. "RING finger protein 13 protects against nonalcoholic steatohepatitis by targeting STING-relayed signaling pathways," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Mutian Jia & Li Chai & Jie Wang & Mengge Wang & Danhui Qin & Hui Song & Yue Fu & Chunyuan Zhao & Chengjiang Gao & Jihui Jia & Wei Zhao, 2024. "S-nitrosothiol homeostasis maintained by ADH5 facilitates STING-dependent host defense against pathogens," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Siddharth Agarwal & Dino Osmanovic & Mahdi Dizani & Melissa A. Klocke & Elisa Franco, 2024. "Dynamic control of DNA condensation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Bankanidhi Sahoo & Irene Arduini & Kenneth W Drombosky & Ravindra Kodali & Laurie H Sanders & J Timothy Greenamyre & Ronald Wetzel, 2016. "Folding Landscape of Mutant Huntingtin Exon1: Diffusible Multimers, Oligomers and Fibrils, and No Detectable Monomer," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-22, June.
    11. Daipayan Banerjee & Kurt Langberg & Salar Abbas & Eric Odermatt & Praveen Yerramothu & Martin Volaric & Matthew A. Reidenbach & Kathy J. Krentz & C. Dustin Rubinstein & David L. Brautigan & Tarek Abba, 2021. "A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    12. Katelyn C. Cook & Elene Tsopurashvili & Jason M. Needham & Sunnie R. Thompson & Ileana M. Cristea, 2022. "Restructured membrane contacts rewire organelles for human cytomegalovirus infection," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    13. Momčilo Gavrilov & Joshua Y. C. Yang & Roger S. Zou & Wen Ma & Chun-Ying Lee & Sonisilpa Mohapatra & Jimin Kang & Ting-Wei Liao & Sua Myong & Taekjip Ha, 2022. "Engineered helicase replaces thermocycler in DNA amplification while retaining desired PCR characteristics," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Zhantao Shao & Jack Hu & Allison Jandura & Ronit Wilk & Matthew Jachimowicz & Lingfeng Ma & Chun Hu & Abby Sundquist & Indrani Das & Phillip Samuel-Larbi & Julie A. Brill & Henry M. Krause, 2024. "Spatially revealed roles for lncRNAs in Drosophila spermatogenesis, Y chromosome function and evolution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Karl Herbine & Ashok R. Nayak & Dmitry Temiakov, 2024. "Structural basis for substrate binding and selection by human mitochondrial RNA polymerase," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Zoë P. Van Acker & Anika Perdok & Ruben Hellemans & Katherine North & Inge Vorsters & Cedric Cappel & Jonas Dehairs & Johannes V. Swinnen & Ragna Sannerud & Marine Bretou & Markus Damme & Wim Annaert, 2023. "Phospholipase D3 degrades mitochondrial DNA to regulate nucleotide signaling and APP metabolism," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    17. Nathan Meade & Helen K. Toreev & Ram P. Chakrabarty & Charles R. Hesser & Chorong Park & Navdeep S. Chandel & Derek Walsh, 2023. "The poxvirus F17 protein counteracts mitochondrially orchestrated antiviral responses," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Chiara Scopa & Samantha M. Barnada & Maria E. Cicardi & Mo Singer & Davide Trotti & Marco Trizzino, 2023. "JUN upregulation drives aberrant transposable element mobilization, associated innate immune response, and impaired neurogenesis in Alzheimer’s disease," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Jeremy J. Ratiu & William E. Barclay & Elliot Lin & Qun Wang & Sebastian Wellford & Naren Mehta & Melissa J. Harnois & Devon DiPalma & Sumedha Roy & Alejandra V. Contreras & Mari L. Shinohara & David , 2022. "Loss of Zfp335 triggers cGAS/STING-dependent apoptosis of post-β selection thymocytes," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    20. Abhishek Aich & Angela Boshnakovska & Steffen Witte & Tanja Gall & Kerstin Unthan-Fechner & Roya Yousefi & Arpita Chowdhury & Drishan Dahal & Aditi Methi & Svenja Kaufmann & Ivan Silbern & Jan Prochaz, 2024. "Defective mitochondrial COX1 translation due to loss of COX14 function triggers ROS-induced inflammation in mouse liver," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45535-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.