IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46216-9.html
   My bibliography  Save this article

Continuous strain tuning of oxygen evolution catalysts with anisotropic thermal expansion

Author

Listed:
  • Yu Du

    (Nanjing University)

  • Fakang Xie

    (Nanjing University)

  • Mengfei Lu

    (Nanjing University
    Nanjing University)

  • Rongxian Lv

    (Nanjing Institute of Technology)

  • Wangxi Liu

    (Nanjing University
    Nanjing University)

  • Yuandong Yan

    (Nanjing University)

  • Shicheng Yan

    (Nanjing University)

  • Zhigang Zou

    (Nanjing University
    Nanjing University)

Abstract

Compressive strain, downshifting the d-band center of transition metal oxides, is an effective way to accelerate the sluggish kinetics of oxygen evolution reaction (OER) for water electrolysis. Here, we find that anisotropic thermal expansion can produce compressive strains of the IrO6 octahedron in Sr2IrO4 catalyst, thus downshifting its d-band center. Different from the previous strategies to create constant strains in the crystals, the thermal-triggered compressive strains can be real-timely tuned by varying temperature. As a result of the thermal strain accelerating OER kinetics, the Sr2IrO4 exhibits the nonlinear lnjo - T−1 (jo, exchange current density; T, absolute temperature) Arrhenius relationship, resulting from the thermally induced low-barrier electron transfer in the presence of thermal compressive strains. Our results verify that the thermal field can be utilized to manipulate the electronic states of Sr2IrO4 via thermal compressive strains downshifting the d-band center, significantly accelerating the OER kinetics, beyond the traditional thermal diffusion effects.

Suggested Citation

  • Yu Du & Fakang Xie & Mengfei Lu & Rongxian Lv & Wangxi Liu & Yuandong Yan & Shicheng Yan & Zhigang Zou, 2024. "Continuous strain tuning of oxygen evolution catalysts with anisotropic thermal expansion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46216-9
    DOI: 10.1038/s41467-024-46216-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46216-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46216-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhen-Feng Huang & Jiajia Song & Yonghua Du & Shibo Xi & Shuo Dou & Jean Marie Vianney Nsanzimana & Cheng Wang & Zhichuan J. Xu & Xin Wang, 2019. "Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts," Nature Energy, Nature, vol. 4(4), pages 329-338, April.
    2. A. Ulvestad & M. J. Welland & S. S. E. Collins & R. Harder & E. Maxey & J. Wingert & A. Singer & S. Hy & P. Mulvaney & P. Zapol & O. G. Shpyrko, 2015. "Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    3. Xianbing Miao & Lifu Zhang & Liang Wu & Zhenpeng Hu & Lei Shi & Shiming Zhou, 2019. "Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    4. Yin Qin & Tingting Yu & Sihao Deng & Xiao-Ye Zhou & Dongmei Lin & Qian Zhang & Zeyu Jin & Danfeng Zhang & Yan-Bing He & Hua-Jun Qiu & Lunhua He & Feiyu Kang & Kaikai Li & Tong-Yi Zhang, 2022. "RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Weiren Cheng & Xu Zhao & Hui Su & Fumin Tang & Wei Che & Hui Zhang & Qinghua Liu, 2019. "Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis," Nature Energy, Nature, vol. 4(2), pages 115-122, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyu Ping & Yongduo Liu & Lixia Zheng & Yang Song & Lin Guo & Siguo Chen & Zidong Wei, 2024. "Locking the lattice oxygen in RuO2 to stabilize highly active Ru sites in acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Zhaoping Shi & Ji Li & Yibo Wang & Shiwei Liu & Jianbing Zhu & Jiahao Yang & Xian Wang & Jing Ni & Zheng Jiang & Lijuan Zhang & Ying Wang & Changpeng Liu & Wei Xing & Junjie Ge, 2023. "Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Fangqing Wang & Peichao Zou & Yangyang Zhang & Wenli Pan & Ying Li & Limin Liang & Cong Chen & Hui Liu & Shijian Zheng, 2023. "Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Panlong Zhai & Chen Wang & Yuanyuan Zhao & Yanxue Zhang & Junfeng Gao & Licheng Sun & Jungang Hou, 2023. "Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Haoyin Zhong & Qi Zhang & Junchen Yu & Xin Zhang & Chao Wu & Hang An & Yifan Ma & Hao Wang & Jun Zhang & Yong-Wei Zhang & Caozheng Diao & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin Xue, 2023. "Key role of eg* band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Che Lah, Nurul Akmal, 2021. "Late transition metal nanocomplexes: Applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Shuang Wang & Wenhe Xie & Ping Wu & Geyu Lin & Yan Cui & Jiawei Tao & Gaofeng Zeng & Yonghui Deng & Huibin Qiu, 2022. "Soft nanobrush-directed multifunctional MOF nanoarrays," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Xuelei Pan & Mengyu Yan & Qian Liu & Xunbiao Zhou & Xiaobin Liao & Congli Sun & Jiexin Zhu & Callum McAleese & Pierre Couture & Matthew K. Sharpe & Richard Smith & Nianhua Peng & Jonathan England & Sh, 2024. "Electric-field-assisted proton coupling enhanced oxygen evolution reaction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Miaoqi Chu & Zhang Jiang & Michael Wojcik & Tao Sun & Michael Sprung & Jin Wang, 2023. "Probing three-dimensional mesoscopic interfacial structures in a single view using multibeam X-ray coherent surface scattering and holography imaging," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Gang Zhou & Peifang Wang & Bin Hu & Xinyue Shen & Chongchong Liu & Weixiang Tao & Peilin Huang & Lizhe Liu, 2022. "Spin-related symmetry breaking induced by half-disordered hybridization in BixEr2-xRu2O7 pyrochlores for acidic oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Zuyun He & Jun Zhang & Zhiheng Gong & Hang Lei & Deng Zhou & Nian Zhang & Wenjie Mai & Shijun Zhao & Yan Chen, 2022. "Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Zhenglong Fan & Fan Liao & Yujin Ji & Yang Liu & Hui Huang & Dan Wang & Kui Yin & Haiwei Yang & Mengjie Ma & Wenxiang Zhu & Meng Wang & Zhenhui Kang & Youyong Li & Mingwang Shao & Zhiwei Hu & Qi Shao, 2022. "Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H2-production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Lingxi Zhou & Yangfan Shao & Fang Yin & Jia Li & Feiyu Kang & Ruitao Lv, 2023. "Stabilizing non-iridium active sites by non-stoichiometric oxide for acidic water oxidation at high current density," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Jie Dai & Yinlong Zhu & Yu Chen & Xue Wen & Mingce Long & Xinhao Wu & Zhiwei Hu & Daqin Guan & Xixi Wang & Chuan Zhou & Qian Lin & Yifei Sun & Shih-Chang Weng & Huanting Wang & Wei Zhou & Zongping Sha, 2022. "Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Shiyi Chen & Shishi Zhang & Lei Guo & Lun Pan & Chengxiang Shi & Xiangwen Zhang & Zhen-Feng Huang & Guidong Yang & Ji-Jun Zou, 2023. "Reconstructed Ir‒O‒Mo species with strong Brønsted acidity for acidic water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Cong Fang & Jian Zhou & Lili Zhang & Wenchao Wan & Yuxiao Ding & Xiaoyan Sun, 2023. "Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Xiubei Yang & Qizheng An & Xuewen Li & Yubin Fu & Shuai Yang & Minghao Liu & Qing Xu & Gaofeng Zeng, 2024. "Charging modulation of the pyridine nitrogen of covalent organic frameworks for promoting oxygen reduction reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Xiaoran Zhang & Xiaorong Zhu & Shuowen Bo & Chen Chen & Mengyi Qiu & Xiaoxiao Wei & Nihan He & Chao Xie & Wei Chen & Jianyun Zheng & Pinsong Chen & San Ping Jiang & Yafei Li & Qinghua Liu & Shuangyin , 2022. "Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Xin Zhang & Haoyin Zhong & Qi Zhang & Qihan Zhang & Chao Wu & Junchen Yu & Yifan Ma & Hang An & Hao Wang & Yiming Zou & Caozheng Diao & Jingsheng Chen & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin , 2024. "High-spin Co3+ in cobalt oxyhydroxide for efficient water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Yanrong Xue & Jiwu Zhao & Liang Huang & Ying-Rui Lu & Abdul Malek & Ge Gao & Zhongbin Zhuang & Dingsheng Wang & Cafer T. Yavuz & Xu Lu, 2023. "Stabilizing ruthenium dioxide with cation-anchored sulfate for durable oxygen evolution in proton-exchange membrane water electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46216-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.