IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45990-w.html
   My bibliography  Save this article

In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction

Author

Listed:
  • Meihuan Liu

    (University of Science and Technology of China
    Central South University)

  • Jing Zhang

    (University of Science and Technology of China)

  • Hui Su

    (Hunan Normal University)

  • Yaling Jiang

    (University of Science and Technology of China)

  • Wanlin Zhou

    (University of Science and Technology of China)

  • Chenyu Yang

    (University of Science and Technology of China)

  • Shuowen Bo

    (University of Science and Technology of China)

  • Jun Pan

    (Central South University)

  • Qinghua Liu

    (University of Science and Technology of China)

Abstract

Single-atom catalysts, especially those with metal−N4 moieties, hold great promise for facilitating the oxygen reduction reaction. However, the symmetrical distribution of electrons within the metal−N4 moiety results in unsatisfactory adsorption strength of intermediates, thereby limiting their performance improvements. Herein, we present atomically coordination-regulated Co single-atom catalysts that comprise a symmetry-broken Cl−Co−N4 moiety, which serves to break the symmetrical electron distribution. In situ characterizations reveal the dynamic evolution of the symmetry-broken Cl−Co−N4 moiety into a coordination-reduced Cl−Co−N2 structure, effectively optimizing the 3d electron filling of Co sites toward a reduced d-band electron occupancy (d5.8 → d5.28) under reaction conditions for a fast four-electron oxygen reduction reaction process. As a result, the coordination-regulated Co single-atom catalysts deliver a large half-potential of 0.93 V and a mass activity of 5480 A gmetal−1. Importantly, a Zn-air battery using the coordination-regulated Co single-atom catalysts as the cathode also exhibits a large power density and excellent stability.

Suggested Citation

  • Meihuan Liu & Jing Zhang & Hui Su & Yaling Jiang & Wanlin Zhou & Chenyu Yang & Shuowen Bo & Jun Pan & Qinghua Liu, 2024. "In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45990-w
    DOI: 10.1038/s41467-024-45990-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45990-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45990-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wanlin Zhou & Hui Su & Weiren Cheng & Yuanli Li & Jingjing Jiang & Meihuan Liu & Feifan Yu & Wei Wang & Shiqiang Wei & Qinghua Liu, 2022. "Regulating the scaling relationship for high catalytic kinetics and selectivity of the oxygen reduction reaction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Huishan Shang & Xiangyi Zhou & Juncai Dong & Ang Li & Xu Zhao & Qinghua Liu & Yue Lin & Jiajing Pei & Zhi Li & Zhuoli Jiang & Danni Zhou & Lirong Zheng & Yu Wang & Jing Zhou & Zhengkun Yang & Rui Cao , 2020. "Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Ruijie Gao & Jian Wang & Zhen-Feng Huang & Rongrong Zhang & Wei Wang & Lun Pan & Junfeng Zhang & Weikang Zhu & Xiangwen Zhang & Chengxiang Shi & Jongwoo Lim & Ji-Jun Zou, 2021. "Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading," Nature Energy, Nature, vol. 6(6), pages 614-623, June.
    4. Hui Su & Wanlin Zhou & Wu Zhou & Yuanli Li & Lirong Zheng & Hui Zhang & Meihuan Liu & Xiuxiu Zhang & Xuan Sun & Yanzhi Xu & Fengchun Hu & Jing Zhang & Tiandou Hu & Qinghua Liu & Shiqiang Wei, 2021. "In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongping Xue & Yifang Yuan & Yue Yu & Siran Xu & Yifan Wei & Jiaqi Zhang & Haizhong Guo & Minhua Shao & Jia-Nan Zhang, 2024. "Spin occupancy regulation of the Pt d-orbital for a robust low-Pt catalyst towards oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Wanlin Zhou & Baojie Li & Xinyu Liu & Jingjing Jiang & Shuowen Bo & Chenyu Yang & Qizheng An & Yuhao Zhang & Mikhail A. Soldatov & Huijuan Wang & Shiqiang Wei & Qinghua Liu, 2024. "In situ tuning of platinum 5d valence states for four-electron oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Hongqiang Jin & Peipei Li & Peixin Cui & Jinan Shi & Wu Zhou & Xiaohu Yu & Weiguo Song & Changyan Cao, 2022. "Unprecedentedly high activity and selectivity for hydrogenation of nitroarenes with single atomic Co1-N3P1 sites," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Rui-Ting Gao & Jiangwei Zhang & Tomohiko Nakajima & Jinlu He & Xianhu Liu & Xueyuan Zhang & Lei Wang & Limin Wu, 2023. "Single-atomic-site platinum steers photogenerated charge carrier lifetime of hematite nanoflakes for photoelectrochemical water splitting," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Zhirong Zhang & Chuanyi Jia & Peiyu Ma & Chen Feng & Jin Yang & Junming Huang & Jiana Zheng & Ming Zuo & Mingkai Liu & Shiming Zhou & Jie Zeng, 2024. "Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Zhaoping Shi & Ji Li & Yibo Wang & Shiwei Liu & Jianbing Zhu & Jiahao Yang & Xian Wang & Jing Ni & Zheng Jiang & Lijuan Zhang & Ying Wang & Changpeng Liu & Wei Xing & Junjie Ge, 2023. "Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Jie Dai & Yawen Tong & Long Zhao & Zhiwei Hu & Chien-Te Chen & Chang-Yang Kuo & Guangming Zhan & Jiaxian Wang & Xingyue Zou & Qian Zheng & Wei Hou & Ruizhao Wang & Kaiyuan Wang & Rui Zhao & Xiang-Kui , 2024. "Spin polarized Fe1−Ti pairs for highly efficient electroreduction nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Hong-Jing Zhu & Duan-Hui Si & Hui Guo & Ziao Chen & Rong Cao & Yuan-Biao Huang, 2024. "Oxygen-tolerant CO2 electroreduction over covalent organic frameworks via photoswitching control oxygen passivation strategy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Cristina Hora & Florin Ciprian Dan & Nicolae Rancov & Gabriela Elena Badea & Calin Secui, 2022. "Main Trends and Research Directions in Hydrogen Generation Using Low Temperature Electrolysis: A Systematic Literature Review," Energies, MDPI, vol. 15(16), pages 1-21, August.
    10. Yan Shen & Chunjin Ren & Lirong Zheng & Xiaoyong Xu & Ran Long & Wenqing Zhang & Yong Yang & Yongcai Zhang & Yingfang Yao & Haoqiang Chi & Jinlan Wang & Qing Shen & Yujie Xiong & Zhigang Zou & Yong Zh, 2023. "Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Yangyang Liu & Can Li & Chunhui Tan & Zengxia Pei & Tao Yang & Shuzhen Zhang & Qianwei Huang & Yihan Wang & Zheng Zhou & Xiaozhou Liao & Juncai Dong & Hao Tan & Wensheng Yan & Huajie Yin & Zhao-Qing L, 2023. "Electrosynthesis of chlorine from seawater-like solution through single-atom catalysts," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Peng Zhang & Hsiao-Chien Chen & Houyu Zhu & Kuo Chen & Tuya Li & Yilin Zhao & Jiaye Li & Ruanbo Hu & Siying Huang & Wei Zhu & Yunqi Liu & Yuan Pan, 2024. "Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Shuo Zhang & Jianghua Wu & Mengting Zheng & Xin Jin & Zihan Shen & Zhonghua Li & Yanjun Wang & Quan Wang & Xuebin Wang & Hui Wei & Jiangwei Zhang & Peng Wang & Shanqing Zhang & Liyan Yu & Lifeng Dong , 2023. "Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Fangqing Wang & Peichao Zou & Yangyang Zhang & Wenli Pan & Ying Li & Limin Liang & Cong Chen & Hui Liu & Shijian Zheng, 2023. "Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Li Zhang & Xiaoju Yang & Qing Yuan & Zhiming Wei & Jie Ding & Tianshu Chu & Chao Rong & Qiao Zhang & Zhenkun Ye & Fu-Zhen Xuan & Yueming Zhai & Bowei Zhang & Xuan Yang, 2023. "Elucidating the structure-stability relationship of Cu single-atom catalysts using operando surface-enhanced infrared absorption spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Dongpeng Zhang & Yanxiao Li & Pengfei Wang & Jinyong Qu & Yi Li & Sihui Zhan, 2023. "Dynamic active-site induced by host-guest interactions boost the Fenton-like reaction for organic wastewater treatment," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Xin Zhao & Ruiqi Fang & Fengliang Wang & Xiangpeng Kong & Yingwei Li, 2022. "Atomic design of dual-metal hetero-single-atoms for high-efficiency synthesis of natural flavones," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Ji Yang & Lu Wang & Jiawei Wan & Farid El Gabaly & Andre L. Fernandes Cauduro & Bernice E. Mills & Jeng-Lung Chen & Liang-Ching Hsu & Daewon Lee & Xiao Zhao & Haimei Zheng & Miquel Salmeron & Caiqi Wa, 2024. "Atomically synergistic Zn-Cr catalyst for iso-stoichiometric co-conversion of ethane and CO2 to ethylene and CO," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Xiubei Yang & Qizheng An & Xuewen Li & Yubin Fu & Shuai Yang & Minghao Liu & Qing Xu & Gaofeng Zeng, 2024. "Charging modulation of the pyridine nitrogen of covalent organic frameworks for promoting oxygen reduction reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Yurui Fan & Haomiao Xu & Guanqun Gao & Mingming Wang & Wenjun Huang & Lei Ma & Yancai Yao & Zan Qu & Pengfei Xie & Bin Dai & Naiqiang Yan, 2024. "Asymmetric Ru-In atomic pairs promote highly active and stable acetylene hydrochlorination," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45990-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.