IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46071-8.html
   My bibliography  Save this article

Smart touchless human–machine interaction based on crystalline porous cages

Author

Listed:
  • Jinrong Wang

    (King Abdullah University of Science and Technology (KAUST))

  • Weibin Lin

    (King Abdullah University of Science and Technology (KAUST))

  • Zhuo Chen

    (King Abdullah University of Science and Technology (KAUST))

  • Valeriia O. Nikolaeva

    (King Abdullah University of Science and Technology (KAUST))

  • Lukman O. Alimi

    (King Abdullah University of Science and Technology (KAUST))

  • Niveen M. Khashab

    (King Abdullah University of Science and Technology (KAUST)
    King Abdullah University of Science and Technology (KAUST))

Abstract

The rise of touchless technology, driven by the recent pandemic, has transformed human-machine interaction (HMI). Projections indicate a substantial growth in the touchless technology market, nearly tripling from $13.6 billion in 2021 to an estimated $37.6 billion by 2026. In response to the pandemic-driven shift towards touchless technology, here we show an organic cage-based humidity sensor with remarkable humidity responsiveness, forming the basis for advanced touchless platforms in potential future HMI systems. This cage sensor boasts an ultrafast response/recovery time (1 s/3 s) and exceptional stability (over 800 cycles) across relative humidity (RH) changes from 11% to 95%. The crystal structure’s 3D pore network and luxuriant water-absorbing functional groups both inside and outside of the cage contribute synergistically to superior humidity sensing. Demonstrating versatility, we showcase this cage in smart touchless control screens and touchless password managers, presenting cost-effective and easily processable applications of molecularly porous materials in touchless HMI.

Suggested Citation

  • Jinrong Wang & Weibin Lin & Zhuo Chen & Valeriia O. Nikolaeva & Lukman O. Alimi & Niveen M. Khashab, 2024. "Smart touchless human–machine interaction based on crystalline porous cages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46071-8
    DOI: 10.1038/s41467-024-46071-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46071-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46071-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jin Ge & Xu Wang & Michael Drack & Oleksii Volkov & Mo Liang & Gilbert Santiago Cañón Bermúdez & Rico Illing & Changan Wang & Shengqiang Zhou & Jürgen Fassbender & Martin Kaltenbrunner & Denys Makarov, 2019. "A bimodal soft electronic skin for tactile and touchless interaction in real time," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Shun An & Hanrui Zhu & Chunzhi Guo & Benwei Fu & Chengyi Song & Peng Tao & Wen Shang & Tao Deng, 2022. "Noncontact human-machine interaction based on hand-responsive infrared structural color," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Ming Liu & Linjiang Chen & Scott Lewis & Samantha Y. Chong & Marc A. Little & Tom Hasell & Iain M. Aldous & Craig M. Brown & Martin W. Smith & Carole A. Morrison & Laurence J. Hardwick & Andrew I. Coo, 2016. "Three-dimensional protonic conductivity in porous organic cage solids," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    4. Xiang Li & Weibin Lin & Vivekanand Sharma & Radoslaw Gorecki & Munmun Ghosh & Basem A. Moosa & Sandra Aristizabal & Shanshan Hong & Niveen M. Khashab & Suzana P. Nunes, 2023. "Polycage membranes for precise molecular separation and catalysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Tiefan Huang & Basem A. Moosa & Phuong Hoang & Jiangtao Liu & Stefan Chisca & Gengwu Zhang & Mram AlYami & Niveen M. Khashab & Suzana P. Nunes, 2020. "Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. Nina Haug & Lukas Geyrhofer & Alessandro Londei & Elma Dervic & Amélie Desvars-Larrive & Vittorio Loreto & Beate Pinior & Stefan Thurner & Peter Klimek, 2020. "Ranking the effectiveness of worldwide COVID-19 government interventions," Nature Human Behaviour, Nature, vol. 4(12), pages 1303-1312, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banan Alhazmi & Gergo Ignacz & Maria Vincenzo & Mohamed Nejib Hedhili & Gyorgy Szekely & Suzana P. Nunes, 2024. "Ultraselective Macrocycle Membranes for Pharmaceutical Ingredients Separation in Organic Solvents," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Shanshan Hong & Maria Vincenzo & Alberto Tiraferri & Erica Bertozzi & Radosław Górecki & Bambar Davaasuren & Xiang Li & Suzana P. Nunes, 2024. "Precision ion separation via self-assembled channels," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Si-Hua Liu & Jun-Hao Zhou & Chunrui Wu & Peng Zhang & Xingzhong Cao & Jian-Ke Sun, 2024. "Sub-8 nm networked cage nanofilm with tunable nanofluidic channels for adaptive sieving," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    5. Davide Tosi & Alessandro Siro Campi, 2021. "How Schools Affected the COVID-19 Pandemic in Italy: Data Analysis for Lombardy Region, Campania Region, and Emilia Region," Future Internet, MDPI, vol. 13(5), pages 1-12, April.
    6. Marco Biagetti & Valentina Ferri, 2022. "Covid-19: the effects of the Italian red zones on mortality," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 76(3), pages 17-28, July-Sept.
    7. Shuo Li & Yong Zhang & Xiaoping Liang & Haomin Wang & Haojie Lu & Mengjia Zhu & Huimin Wang & Mingchao Zhang & Xinping Qiu & Yafeng Song & Yingying Zhang, 2022. "Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Lennox, Janet & Reuge, Nicolas & Benavides, Francisco, 2021. "UNICEF’s lessons learned from the education response to the COVID-19 crisis and reflections on the implications for education policy," International Journal of Educational Development, Elsevier, vol. 85(C).
    9. Matthew Spiegel & Heather Tookes, 2021. "Business Restrictions and COVID-19 Fatalities [The immediate effect of COVID-19 policies on social distancing behavior in the United States]," The Review of Financial Studies, Society for Financial Studies, vol. 34(11), pages 5266-5308.
    10. Battisti, Michele & Maggio, Giuseppe, 2023. "Will the last be the first? School closures and educational outcomes," European Economic Review, Elsevier, vol. 154(C).
    11. Biswas, Debajyoti & Alfandari, Laurent, 2022. "Designing an optimal sequence of non‐pharmaceutical interventions for controlling COVID-19," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1372-1391.
    12. Jain, Radhika & Dupas, Pascaline, 2021. "The effects of India’s COVID-19 lockdown on critical non-COVID health care and outcomes: evidence from a retrospective cohort analysis of dialysis patients," MPRA Paper 110213, University Library of Munich, Germany, revised 12 Jan 2021.
    13. Tu, Ke & Chen, Shirley & Mesler, Rhiannon MacDonnell, 2023. "Policy stringency and the spread of COVID-19: The moderating role of culture and its implications on first responses," Health Policy, Elsevier, vol. 137(C).
    14. Phu Nguyen Van & Thierry Blayac & Dimitri Dubois & Sebastien Duchene & Marc Willinger & Bruno Ventelou, 2021. "Designing acceptable anti-COVID-19 policies by taking into account individuals’ preferences: evidence from a Discrete Choice Experiment," EconomiX Working Papers 2021-33, University of Paris Nanterre, EconomiX.
    15. Sprengholz, Philipp & Siegers, Regina & Goldhahn, Laura & Eitze, Sarah & Betsch, Cornelia, 2021. "Good night: Experimental evidence that nighttime curfews may fuel disease dynamics by increasing contact density," Social Science & Medicine, Elsevier, vol. 286(C).
    16. Zhen Wang & Qing-Pu Zhang & Fei Guo & Hui Ma & Zi-Hui Liang & Chang-Hai Yi & Chun Zhang & Chuan-Feng Chen, 2024. "Self-similar chiral organic molecular cages," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Briscese, Guglielmo & Lacetera, Nicola & Macis, Mario & Tonin, Mirco, 2023. "Expectations, reference points, and compliance with COVID-19 social distancing measures," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 103(C).
    18. Zhenyu Yang & Chunyang Yu & Junjie Ding & Lihua Chen & Huiyu Liu & Yangzhi Ye & Pan Li & Jiaolong Chen & Kim Jiayi Wu & Qiang-Yu Zhu & Yu-Quan Zhao & Xiaoning Liu & Xiaodong Zhuang & Shaodong Zhang, 2021. "A class of organic cages featuring twin cavities," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    19. Cassetti, Gabriele & Boitier, Baptiste & Elia, Alessia & Le Mouël, Pierre & Gargiulo, Maurizio & Zagamé, Paul & Nikas, Alexandros & Koasidis, Konstantinos & Doukas, Haris & Chiodi, Alessandro, 2023. "The interplay among COVID-19 economic recovery, behavioural changes, and the European Green Deal: An energy-economic modelling perspective," Energy, Elsevier, vol. 263(PC).
    20. Delis, Manthos D. & Iosifidi, Maria & Tasiou, Menelaos, 2021. "Efficiency of government policy during the COVID-19 pandemic," MPRA Paper 107046, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46071-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.