IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46071-8.html
   My bibliography  Save this article

Smart touchless human–machine interaction based on crystalline porous cages

Author

Listed:
  • Jinrong Wang

    (King Abdullah University of Science and Technology (KAUST))

  • Weibin Lin

    (King Abdullah University of Science and Technology (KAUST))

  • Zhuo Chen

    (King Abdullah University of Science and Technology (KAUST))

  • Valeriia O. Nikolaeva

    (King Abdullah University of Science and Technology (KAUST))

  • Lukman O. Alimi

    (King Abdullah University of Science and Technology (KAUST))

  • Niveen M. Khashab

    (King Abdullah University of Science and Technology (KAUST)
    King Abdullah University of Science and Technology (KAUST))

Abstract

The rise of touchless technology, driven by the recent pandemic, has transformed human-machine interaction (HMI). Projections indicate a substantial growth in the touchless technology market, nearly tripling from $13.6 billion in 2021 to an estimated $37.6 billion by 2026. In response to the pandemic-driven shift towards touchless technology, here we show an organic cage-based humidity sensor with remarkable humidity responsiveness, forming the basis for advanced touchless platforms in potential future HMI systems. This cage sensor boasts an ultrafast response/recovery time (1 s/3 s) and exceptional stability (over 800 cycles) across relative humidity (RH) changes from 11% to 95%. The crystal structure’s 3D pore network and luxuriant water-absorbing functional groups both inside and outside of the cage contribute synergistically to superior humidity sensing. Demonstrating versatility, we showcase this cage in smart touchless control screens and touchless password managers, presenting cost-effective and easily processable applications of molecularly porous materials in touchless HMI.

Suggested Citation

  • Jinrong Wang & Weibin Lin & Zhuo Chen & Valeriia O. Nikolaeva & Lukman O. Alimi & Niveen M. Khashab, 2024. "Smart touchless human–machine interaction based on crystalline porous cages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46071-8
    DOI: 10.1038/s41467-024-46071-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46071-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46071-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shun An & Hanrui Zhu & Chunzhi Guo & Benwei Fu & Chengyi Song & Peng Tao & Wen Shang & Tao Deng, 2022. "Noncontact human-machine interaction based on hand-responsive infrared structural color," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Ming Liu & Linjiang Chen & Scott Lewis & Samantha Y. Chong & Marc A. Little & Tom Hasell & Iain M. Aldous & Craig M. Brown & Martin W. Smith & Carole A. Morrison & Laurence J. Hardwick & Andrew I. Coo, 2016. "Three-dimensional protonic conductivity in porous organic cage solids," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    3. Nina Haug & Lukas Geyrhofer & Alessandro Londei & Elma Dervic & Amélie Desvars-Larrive & Vittorio Loreto & Beate Pinior & Stefan Thurner & Peter Klimek, 2020. "Ranking the effectiveness of worldwide COVID-19 government interventions," Nature Human Behaviour, Nature, vol. 4(12), pages 1303-1312, December.
    4. Jin Ge & Xu Wang & Michael Drack & Oleksii Volkov & Mo Liang & Gilbert Santiago Cañón Bermúdez & Rico Illing & Changan Wang & Shengqiang Zhou & Jürgen Fassbender & Martin Kaltenbrunner & Denys Makarov, 2019. "A bimodal soft electronic skin for tactile and touchless interaction in real time," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Xiang Li & Weibin Lin & Vivekanand Sharma & Radoslaw Gorecki & Munmun Ghosh & Basem A. Moosa & Sandra Aristizabal & Shanshan Hong & Niveen M. Khashab & Suzana P. Nunes, 2023. "Polycage membranes for precise molecular separation and catalysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Tiefan Huang & Basem A. Moosa & Phuong Hoang & Jiangtao Liu & Stefan Chisca & Gengwu Zhang & Mram AlYami & Niveen M. Khashab & Suzana P. Nunes, 2020. "Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shanshan Hong & Maria Vincenzo & Alberto Tiraferri & Erica Bertozzi & Radosław Górecki & Bambar Davaasuren & Xiang Li & Suzana P. Nunes, 2024. "Precision ion separation via self-assembled channels," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Si-Hua Liu & Jun-Hao Zhou & Chunrui Wu & Peng Zhang & Xingzhong Cao & Jian-Ke Sun, 2024. "Sub-8 nm networked cage nanofilm with tunable nanofluidic channels for adaptive sieving," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    4. Davide Tosi & Alessandro Siro Campi, 2021. "How Schools Affected the COVID-19 Pandemic in Italy: Data Analysis for Lombardy Region, Campania Region, and Emilia Region," Future Internet, MDPI, vol. 13(5), pages 1-12, April.
    5. Marco Biagetti & Valentina Ferri, 2022. "Covid-19: the effects of the Italian red zones on mortality," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 76(3), pages 17-28, July-Sept.
    6. Matthew Spiegel & Heather Tookes, 2021. "Business Restrictions and COVID-19 Fatalities [The immediate effect of COVID-19 policies on social distancing behavior in the United States]," The Review of Financial Studies, Society for Financial Studies, vol. 34(11), pages 5266-5308.
    7. Biswas, Debajyoti & Alfandari, Laurent, 2022. "Designing an optimal sequence of non‐pharmaceutical interventions for controlling COVID-19," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1372-1391.
    8. Phu Nguyen Van & Thierry Blayac & Dimitri Dubois & Sebastien Duchene & Marc Willinger & Bruno Ventelou, 2021. "Designing acceptable anti-COVID-19 policies by taking into account individuals’ preferences: evidence from a Discrete Choice Experiment," EconomiX Working Papers 2021-33, University of Paris Nanterre, EconomiX.
    9. Zhen Wang & Qing-Pu Zhang & Fei Guo & Hui Ma & Zi-Hui Liang & Chang-Hai Yi & Chun Zhang & Chuan-Feng Chen, 2024. "Self-similar chiral organic molecular cages," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Cassetti, Gabriele & Boitier, Baptiste & Elia, Alessia & Le Mouël, Pierre & Gargiulo, Maurizio & Zagamé, Paul & Nikas, Alexandros & Koasidis, Konstantinos & Doukas, Haris & Chiodi, Alessandro, 2023. "The interplay among COVID-19 economic recovery, behavioural changes, and the European Green Deal: An energy-economic modelling perspective," Energy, Elsevier, vol. 263(PC).
    11. Delis, Manthos D. & Iosifidi, Maria & Tasiou, Menelaos, 2021. "Efficiency of government policy during the COVID-19 pandemic," MPRA Paper 107046, University Library of Munich, Germany.
    12. William Clyde & Andreas Kakolyris & Georgios Koimisis, 2021. "A Study of the Effectiveness of Governmental Strategies for Managing Mortality from COVID-19," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 47(4), pages 487-505, October.
    13. Fischer Kai, 2022. "Thinning out spectators: Did football matches contribute to the second COVID-19 wave in Germany?," German Economic Review, De Gruyter, vol. 23(4), pages 595-640, December.
    14. Iloanusi, Ogechukwu & Ross, Arun, 2021. "Leveraging weather data for forecasting cases-to-mortality rates due to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    15. Mike Tsionas & Mikael A. Martins & Almas Heshmati, 2023. "Effects of the vaccination and public support on covid-19 cases and number of deaths in Sweden," Operational Research, Springer, vol. 23(3), pages 1-28, September.
    16. Andy Hong & Sandip Chakrabarti, 2023. "Compact living or policy inaction? Effects of urban density and lockdown on the COVID-19 outbreak in the US," Urban Studies, Urban Studies Journal Limited, vol. 60(9), pages 1588-1609, July.
    17. Griffin, Bethany & Conner, Mark & Norman, Paul, 2022. "Applying an extended protection motivation theory to predict Covid-19 vaccination intentions and uptake in 50–64 year olds in the UK," Social Science & Medicine, Elsevier, vol. 298(C).
    18. Drummond, John Amin & Malamud, Bruce D. & Mulligan, Joe & Bukachi, Vera & Talib, Manshur & Wandera, Amos & Pelling, Mark & Taylor, Faith E., 2023. "COVID-19 Interventions in an informal settlement: A spatial analysis of accessibility in Kibera, Kenya," Journal of Transport Geography, Elsevier, vol. 113(C).
    19. Kate M. Bubar & Casey E. Middleton & Kristen K. Bjorkman & Roy Parker & Daniel B. Larremore, 2022. "SARS-CoV-2 transmission and impacts of unvaccinated-only screening in populations of mixed vaccination status," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. López-Mendoza, Héctor & González-Álvarez, María A. & Montañés, Antonio, 2024. "Assessing the effectiveness of international government responses to the COVID-19 pandemic," Economics & Human Biology, Elsevier, vol. 52(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46071-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.