IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v185y2024ics0960077924006714.html
   My bibliography  Save this article

Unveiling the reproduction number scaling in characterizing social contagion coverage

Author

Listed:
  • Wang, Xiangrong
  • Hou, Hongru
  • Lu, Dan
  • Wu, Zongze
  • Moreno, Yamir

Abstract

The spreading of diseases depends critically on the reproduction number, which gives the expected number of new cases produced by infectious individuals during their lifetime. Here we reveal a widespread power-law scaling relationship between the variance and the mean of the reproduction number across simple and complex contagion mechanisms on various network structures. This scaling relation is verified on an empirical scientific collaboration network and analytically studied using generating functions. Specifically, we explore the impact of the scaling law of the reproduction number on the expected size of cascades of contagions. We find that the mean cascade size can be inferred from the mean reproduction number, albeit with limitations in capturing spreading variations. Nonetheless, insights derived from the tail of the distribution of the reproduction number contribute to explaining cascade size variation and allow the distinction between simple and complex contagion mechanisms. Our study sheds light on the intricate dynamics of spreading processes and cascade sizes in social networks, offering valuable insights for managing contagion outbreaks and optimizing responses to emerging threats.

Suggested Citation

  • Wang, Xiangrong & Hou, Hongru & Lu, Dan & Wu, Zongze & Moreno, Yamir, 2024. "Unveiling the reproduction number scaling in characterizing social contagion coverage," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924006714
    DOI: 10.1016/j.chaos.2024.115119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924006714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katelyn M Gostic & Lauren McGough & Edward B Baskerville & Sam Abbott & Keya Joshi & Christine Tedijanto & Rebecca Kahn & Rene Niehus & James A Hay & Pablo M De Salazar & Joel Hellewell & Sophie Meaki, 2020. "Practical considerations for measuring the effective reproductive number, Rt," PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-21, December.
    2. Bin Zhou & Sen Pei & Lev Muchnik & Xiangyi Meng & Xiaoke Xu & Alon Sela & Shlomo Havlin & H. Eugene Stanley, 2020. "Realistic modelling of information spread using peer-to-peer diffusion patterns," Nature Human Behaviour, Nature, vol. 4(11), pages 1198-1207, November.
    3. repec:nas:journl:v:115:y:2018:p:7468-7472 is not listed on IDEAS
    4. Claudius Gros & Roser Valenti & Lukas Schneider & Kilian Valenti & Daniel Gros, 2020. "Containment efficiency and control strategies for the Corona pandemic costs," Papers 2004.00493, arXiv.org, revised Jan 2021.
    5. Wang, Zhixiao & Rui, Xiaobin & Yuan, Guan & Cui, Jingjing & Hadzibeganovic, Tarik, 2021. "Endemic information-contagion outbreaks in complex networks with potential spreaders based recurrent-state transmission dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    6. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Analysis of SIR epidemic model with information spreading of awareness," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 118-125.
    7. Nina Haug & Lukas Geyrhofer & Alessandro Londei & Elma Dervic & Amélie Desvars-Larrive & Vittorio Loreto & Beate Pinior & Stefan Thurner & Peter Klimek, 2020. "Ranking the effectiveness of worldwide COVID-19 government interventions," Nature Human Behaviour, Nature, vol. 4(12), pages 1303-1312, December.
    8. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    9. Yee Whye Teh & Bryn Elesedy & Bobby He & Michael Hutchinson & Sheheryar Zaidi & Avishkar Bhoopchand & Ulrich Paquet & Nenad Tomasev & Jonathan Read & Peter J. Diggle, 2022. "Efficient Bayesian inference of instantaneous reproduction numbers at fine spatial scales, with an application to mapping and nowcasting the Covid‐19 epidemic in British local authorities," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 65-85, November.
    10. Jonas L. Juul & Johan Ugander, 2021. "Comparing information diffusion mechanisms by matching on cascade size," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(46), pages 2100786118-, November.
    11. Brandon Lieberthal & Allison M Gardner, 2021. "Connectivity, reproduction number, and mobility interact to determine communities’ epidemiological superspreader potential in a metapopulation network," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    2. Dominic P. Brass & Christina A. Cobbold & Bethan V. Purse & David A. Ewing & Amanda Callaghan & Steven M. White, 2024. "Role of vector phenotypic plasticity in disease transmission as illustrated by the spread of dengue virus by Aedes albopictus," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    3. Mayer, Marius & Bichler, Bernhard Fabian & Pikkemaat, Birgit & Peters, Mike, 2021. "Media discourses about a superspreader destination: How mismanagement of Covid-19 triggers debates about sustainability and geopolitics," Annals of Tourism Research, Elsevier, vol. 91(C).
    4. Joe Meagher & Nial Friel, 2022. "Assessing epidemic curves for evidence of superspreading," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2179-2202, October.
    5. Nicholas P. Jewell & Joseph A. Lewnard, 2022. "On the use of the reproduction number for SARS‐CoV‐2: Estimation, misinterpretations and relationships with other ecological measures," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 16-27, November.
    6. Huo, Liang’an & Chen, Sijing, 2020. "Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    7. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    8. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    9. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    10. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    11. Aldo Carranza & Marcel Goic & Eduardo Lara & Marcelo Olivares & Gabriel Y. Weintraub & Julio Covarrubia & Cristian Escobedo & Natalia Jara & Leonardo J. Basso, 2022. "The Social Divide of Social Distancing: Shelter-in-Place Behavior in Santiago During the Covid-19 Pandemic," Management Science, INFORMS, vol. 68(3), pages 2016-2027, March.
    12. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    13. Di Bartolomeo, Giovanni & D'Imperio, Paolo & Felici, Francesco, 2022. "The fiscal response to the Italian COVID-19 crisis: A counterfactual analysis," Journal of Macroeconomics, Elsevier, vol. 73(C).
    14. Buechel, Berno & Klößner, Stefan & Meng, Fanyuan & Nassar, Anis, 2023. "Misinformation due to asymmetric information sharing," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    15. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    16. Lazebnik, Teddy & Spiegel, Orr, 2025. "Individual variation affects outbreak magnitude and predictability in multi-pathogen model of pigeons visiting dairy farms," Ecological Modelling, Elsevier, vol. 499(C).
    17. Davide Tosi & Alessandro Siro Campi, 2021. "How Schools Affected the COVID-19 Pandemic in Italy: Data Analysis for Lombardy Region, Campania Region, and Emilia Region," Future Internet, MDPI, vol. 13(5), pages 1-12, April.
    18. Xie, Xiaoxiao & Huo, Liang'an, 2024. "Co-evolution dynamics between information and epidemic with asymmetric activity levels and community structure in time-varying multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    19. Zhu, Hongmiao & Jin, Zhen & Yan, Xin, 2023. "A dynamics model of coupling transmission for multiple different knowledge in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    20. Luc E. Coffeng & Sake J. de Vlas, 2022. "Predicting epidemics and the impact of interventions in heterogeneous settings: Standard SEIR models are too pessimistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 28-35, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924006714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.