IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45890-z.html
   My bibliography  Save this article

Deglaciation-enhanced mantle CO2 fluxes at Yellowstone imply positive climate feedback

Author

Listed:
  • Fiona Clerc

    (Previously at: MIT-WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering
    Columbia University)

  • Mark D. Behn

    (Boston College)

  • Brent M. Minchew

    (Massachusetts Institute of Technology)

Abstract

Mantle melt generation in response to glacial unloading has been linked to enhanced magmatic volatile release in Iceland and global eruptive records. It is unclear whether this process is important in systems lacking evidence of enhanced eruptions. The deglaciation of the Yellowstone ice cap did not observably enhance volcanism, yet Yellowstone emits large volumes of CO2 due to melt crystallization at depth. Here we model mantle melting and CO2 release during the deglaciation of Yellowstone (using Iceland as a benchmark). We find mantle melting is enhanced 19-fold during deglaciation, generating an additional 250–620 km3. These melts segregate an additional 18–79 Gt of CO2 from the mantle, representing a ~3–15% increase in the global volcanic CO2 flux (if degassed immediately). We suggest deglaciation-enhanced mantle melting is important in continental settings with partially molten mantle – including Greenland and West Antarctica – potentially implying positive feedbacks between deglaciation and climate warming.

Suggested Citation

  • Fiona Clerc & Mark D. Behn & Brent M. Minchew, 2024. "Deglaciation-enhanced mantle CO2 fluxes at Yellowstone imply positive climate feedback," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45890-z
    DOI: 10.1038/s41467-024-45890-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45890-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45890-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ulrich H. Faul, 2001. "Melt retention and segregation beneath mid-ocean ridges," Nature, Nature, vol. 410(6831), pages 920-923, April.
    2. David Pollard & Robert M. DeConto, 2009. "Modelling West Antarctic ice sheet growth and collapse through the past five million years," Nature, Nature, vol. 458(7236), pages 329-332, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam D. Sproson & Yusuke Yokoyama & Yosuke Miyairi & Takahiro Aze & Rebecca L. Totten, 2022. "Holocene melting of the West Antarctic Ice Sheet driven by tropical Pacific warming," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    3. Timothy Lenton & Juan-Carlos Ciscar, 2013. "Integrating tipping points into climate impact assessments," Climatic Change, Springer, vol. 117(3), pages 585-597, April.
    4. Elizabeth Kopits & Alex L. Marten & Ann Wolverton, 2013. "Moving Forward with Incorporating "Catastrophic" Climate Change into Policy Analysis," NCEE Working Paper Series 201301, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Jan 2013.
    5. Daniel P. Lowry & Holly K. Han & Nicholas R. Golledge & Natalya Gomez & Katelyn M. Johnson & Robert M. McKay, 2024. "Ocean cavity regime shift reversed West Antarctic grounding line retreat in the late Holocene," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Dawei Li & Robert M. DeConto & David Pollard & Yongyun Hu, 2024. "Competing climate feedbacks of ice sheet freshwater discharge in a warming world," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Ilaria Crotti & Aurélien Quiquet & Amaelle Landais & Barbara Stenni & David J. Wilson & Mirko Severi & Robert Mulvaney & Frank Wilhelms & Carlo Barbante & Massimo Frezzotti, 2022. "Wilkes subglacial basin ice sheet response to Southern Ocean warming during late Pleistocene interglacials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Anders Levermann & Jonathan Bamber & Sybren Drijfhout & Andrey Ganopolski & Winfried Haeberli & Neil Harris & Matthias Huss & Kirstin Krüger & Timothy Lenton & Ronald Lindsay & Dirk Notz & Peter Wadha, 2012. "Potential climatic transitions with profound impact on Europe," Climatic Change, Springer, vol. 110(3), pages 845-878, February.
    9. Won Chang & Murali Haran & Patrick Applegate & David Pollard, 2016. "Calibrating an Ice Sheet Model Using High-Dimensional Binary Spatial Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 57-72, March.
    10. Nicholas R. Golledge, 2020. "Long‐term projections of sea‐level rise from ice sheets," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    11. Michael E. Weber & Nicholas R. Golledge & Chris J. Fogwill & Chris S. M. Turney & Zoë A. Thomas, 2021. "Decadal-scale onset and termination of Antarctic ice-mass loss during the last deglaciation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    12. Michela Biasutti & Adam Sobel & Suzana Camargo & Timothy Creyts, 2012. "Projected changes in the physical climate of the Gulf Coast and Caribbean," Climatic Change, Springer, vol. 112(3), pages 819-845, June.
    13. Jenny A. Gales & Robert M. McKay & Laura De Santis & Michele Rebesco & Jan Sverre Laberg & Amelia E Shevenell & David Harwood & R. Mark Leckie & Denise K. Kulhanek & Maxine King & Molly Patterson & Re, 2023. "Climate-controlled submarine landslides on the Antarctic continental margin," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45890-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.