IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45844-5.html
   My bibliography  Save this article

Biobased and biodegradable films exhibiting circularly polarized room temperature phosphorescence

Author

Listed:
  • Mengnan Cao

    (Northeast Forestry University)

  • Yiran Ren

    (Shenzhen University)

  • Yue Wu

    (Shenzhen University)

  • Jingjie Shen

    (Northeast Forestry University)

  • Shujun Li

    (Northeast Forestry University)

  • Zhen-Qiang Yu

    (Shenzhen University)

  • Shouxin Liu

    (Northeast Forestry University)

  • Jian Li

    (Northeast Forestry University)

  • Orlando J. Rojas

    (University of British Columbia, Vancouver, British Columbia
    University of British Columbia
    University of British Columbia)

  • Zhijun Chen

    (Northeast Forestry University)

Abstract

There is interest in developing sustainable materials displaying circularly polarized room-temperature phosphorescence, which have been scarcely reported. Here, we introduce biobased thin films exhibiting circularly polarized luminescence with simultaneous room-temperature phosphorescence. For this purpose, phosphorescence-active lignosulfonate biomolecules are co-assembled with cellulose nanocrystals in a chiral construct. The lignosulfonate is shown to capture the chirality generated by cellulose nanocrystals within the films, emitting circularly polarized phosphorescence with a 0.21 dissymmetry factor and 103 ms phosphorescence lifetime. By contrast with most organic phosphorescence materials, this chiral-phosphorescent system possesses phosphorescence stability, with no significant recession under extreme chemical environments. Meanwhile, the luminescent films resist water and humid environments but are fully biodegradable (16 days) in soil conditions. The introduced bio-based, environmentally-friendly circularly polarized phosphorescence system is expected to open many opportunities, as demonstrated here for information processing and anti-counterfeiting.

Suggested Citation

  • Mengnan Cao & Yiran Ren & Yue Wu & Jingjie Shen & Shujun Li & Zhen-Qiang Yu & Shouxin Liu & Jian Li & Orlando J. Rojas & Zhijun Chen, 2024. "Biobased and biodegradable films exhibiting circularly polarized room temperature phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45844-5
    DOI: 10.1038/s41467-024-45844-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45844-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45844-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Long Gu & Hongwei Wu & Huili Ma & Wenpeng Ye & Wenyong Jia & He Wang & Hongzhong Chen & Nan Zhang & Dongdong Wang & Cheng Qian & Zhongfu An & Wei Huang & Yanli Zhao, 2020. "Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guang Lu & Jing Tan & Hongxiang Wang & Yi Man & Shuo Chen & Jing Zhang & Chunbo Duan & Chunmiao Han & Hui Xu, 2024. "Delayed room temperature phosphorescence enabled by phosphines," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Xiao Zhang & Mingjian Zeng & Yewen Zhang & Chenyu Zhang & Zhisheng Gao & Fei He & Xudong Xue & Huanhuan Li & Ping Li & Gaozhan Xie & Hui Li & Xin Zhang & Ningning Guo & He Cheng & Ansheng Luo & Wei Zh, 2023. "Multicolor hyperafterglow from isolated fluorescence chromophores," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Juan Wei & Chenyuan Liu & Jiayu Duan & Aiwen Shao & Jinlu Li & Jiangang Li & Wenjie Gu & Zixian Li & Shujuan Liu & Yun Ma & Wei Huang & Qiang Zhao, 2023. "Conformation-dependent dynamic organic phosphorescence through thermal energy driven molecular rotations," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Huai Chen & Mingyang Wei & Yantao He & Jehad Abed & Sam Teale & Edward H. Sargent & Zhenyu Yang, 2022. "Germanium silicon oxide achieves multi-coloured ultra-long phosphorescence and delayed fluorescence at high temperature," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Mingjian Zeng & Weiguang Wang & Shuman Zhang & Zhisheng Gao & Yingmeng Yan & Yitong Liu & Yulong Qi & Xin Yan & Wei Zhao & Xin Zhang & Ningning Guo & Huanhuan Li & Hui Li & Gaozhan Xie & Ye Tao & Runf, 2024. "Enabling robust blue circularly polarized organic afterglow through self-confining isolated chiral chromophore," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Qian Wang & Biyan Lin & Meng Chen & Chengxi Zhao & He Tian & Da-Hui Qu, 2022. "A dynamic assembly-induced emissive system for advanced information encryption with time-dependent security," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45844-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.