IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45734-w.html
   My bibliography  Save this article

Serotonin modulates excitatory synapse maturation in the developing prefrontal cortex

Author

Listed:
  • Roberto Ogelman

    (University of Colorado School of Medicine)

  • Luis E. Gomez Wulschner

    (University of Colorado School of Medicine)

  • Victoria M. Hoelscher

    (University of Colorado School of Medicine)

  • In-Wook Hwang

    (University of Colorado School of Medicine)

  • Victoria N. Chang

    (University of Colorado School of Medicine)

  • Won Chan Oh

    (University of Colorado School of Medicine)

Abstract

Serotonin (5-HT) imbalances in the developing prefrontal cortex (PFC) are linked to long-term behavioral deficits. However, the synaptic mechanisms underlying 5-HT-mediated PFC development are unknown. We found that chemogenetic suppression and enhancement of 5-HT release in the PFC during the first two postnatal weeks decreased and increased the density and strength of excitatory spine synapses, respectively, on prefrontal layer 2/3 pyramidal neurons in mice. 5-HT release on single spines induced structural and functional long-term potentiation (LTP), requiring both 5-HT2A and 5-HT7 receptor signals, in a glutamatergic activity-independent manner. Notably, LTP-inducing 5-HT stimuli increased the long-term survival of newly formed spines ( ≥ 6 h) via 5-HT7 Gαs activation. Chronic treatment of mice with fluoxetine, a selective serotonin-reuptake inhibitor, during the first two weeks, but not the third week of postnatal development, increased the density and strength of excitatory synapses. The effect of fluoxetine on PFC synaptic alterations in vivo was abolished by 5-HT2A and 5-HT7 receptor antagonists. Our data describe a molecular basis of 5-HT-dependent excitatory synaptic plasticity at the level of single spines in the PFC during early postnatal development.

Suggested Citation

  • Roberto Ogelman & Luis E. Gomez Wulschner & Victoria M. Hoelscher & In-Wook Hwang & Victoria N. Chang & Won Chan Oh, 2024. "Serotonin modulates excitatory synapse maturation in the developing prefrontal cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45734-w
    DOI: 10.1038/s41467-024-45734-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45734-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45734-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Masanori Matsuzaki & Naoki Honkura & Graham C. R. Ellis-Davies & Haruo Kasai, 2004. "Structural basis of long-term potentiation in single dendritic spines," Nature, Nature, vol. 429(6993), pages 761-766, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María del Carmen Rodríguez-Martínez & Alba De la Plana Maestre & Juan Antonio Armenta-Peinado & Miguel Ángel Barbancho & Natalia García-Casares, 2021. "Evidence of Animal-Assisted Therapy in Neurological Diseases in Adults: A Systematic Review," IJERPH, MDPI, vol. 18(24), pages 1-17, December.
    2. Sergio Luengo-Sanchez & Isabel Fernaud-Espinosa & Concha Bielza & Ruth Benavides-Piccione & Pedro Larrañaga & Javier DeFelipe, 2018. "3D morphology-based clustering and simulation of human pyramidal cell dendritic spines," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-22, June.
    3. Min Lee & Hyungseok C. Moon & Hyeonjeong Jeong & Dong Wook Kim & Hye Yoon Park & Yongdae Shin, 2024. "Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Isabel Espadas & Jenna L. Wingfield & Yoshihisa Nakahata & Kaushik Chanda & Eddie Grinman & Ilika Ghosh & Karl E. Bauer & Bindu Raveendra & Michael A. Kiebler & Ryohei Yasuda & Vidhya Rangaraju & Sath, 2024. "Synaptically-targeted long non-coding RNA SLAMR promotes structural plasticity by increasing translation and CaMKII activity," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    5. Daria Antonenko & Anna Elisabeth Fromm & Friederike Thams & Ulrike Grittner & Marcus Meinzer & Agnes Flöel, 2023. "Microstructural and functional plasticity following repeated brain stimulation during cognitive training in older adults," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Moritz Deger & Moritz Helias & Stefan Rotter & Markus Diesmann, 2012. "Spike-Timing Dependence of Structural Plasticity Explains Cooperative Synapse Formation in the Neocortex," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-13, September.
    7. Hiromu Takizawa & Noriko Hiroi & Akira Funahashi, 2012. "Mathematical Modeling of Sustainable Synaptogenesis by Repetitive Stimuli Suggests Signaling Mechanisms In Vivo," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-22, December.
    8. Michael Fauth & Florentin Wörgötter & Christian Tetzlaff, 2015. "The Formation of Multi-synaptic Connections by the Interaction of Synaptic and Structural Plasticity and Their Functional Consequences," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-29, January.
    9. David M Santucci & Sridhar Raghavachari, 2008. "The Effects of NR2 Subunit-Dependent NMDA Receptor Kinetics on Synaptic Transmission and CaMKII Activation," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-16, October.
    10. Ojasee Bapat & Tejas Purimetla & Sarah Kruessel & Monil Shah & Ruolin Fan & Christina Thum & Fiona Rupprecht & Julian D. Langer & Vidhya Rangaraju, 2024. "VAP spatially stabilizes dendritic mitochondria to locally support synaptic plasticity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45734-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.