IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45593-5.html
   My bibliography  Save this article

Disordered regions in proteusin peptides guide post-translational modification by a flavin-dependent RiPP brominase

Author

Listed:
  • Nguyet A. Nguyen

    (Georgia Institute of Technology)

  • F. N. U. Vidya

    (Georgia Institute of Technology)

  • Neela H. Yennawar

    (Pennsylvania State University)

  • Hongwei Wu

    (Georgia Institute of Technology)

  • Andrew C. McShan

    (Georgia Institute of Technology)

  • Vinayak Agarwal

    (Georgia Institute of Technology
    Georgia Institute of Technology)

Abstract

To biosynthesize ribosomally synthesized and post-translationally modified peptides (RiPPs), enzymes recognize and bind to the N-terminal leader region of substrate peptides which enables catalytic modification of the C-terminal core. Our current understanding of RiPP leaders is that they are short and largely unstructured. Proteusins are RiPP precursor peptides that defy this characterization as they possess unusually long leaders. Proteusin peptides have not been structurally characterized, and we possess scant understanding of how these atypical leaders engage with modifying enzymes. Here, we determine the structure of a proteusin peptide which shows that unlike other RiPP leaders, proteusin leaders are preorganized into a rigidly structured region and a smaller intrinsically disordered region. With residue level resolution gained from NMR titration experiments, the intermolecular peptide-protein interactions between proteusin leaders and a flavin-dependent brominase are mapped onto the disordered region, leaving the rigidly structured region of the proteusin leader to be functionally dispensable. Spectroscopic observations are biochemically validated to identify a binding motif in proteusin peptides that is conserved among other RiPP leaders as well. This study provides a structural characterization of the proteusin peptides and extends the paradigm of RiPP modification enzymes using not only unstructured peptides, but also structured proteins as substrates.

Suggested Citation

  • Nguyet A. Nguyen & F. N. U. Vidya & Neela H. Yennawar & Hongwei Wu & Andrew C. McShan & Vinayak Agarwal, 2024. "Disordered regions in proteusin peptides guide post-translational modification by a flavin-dependent RiPP brominase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45593-5
    DOI: 10.1038/s41467-024-45593-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45593-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45593-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manuel A. Ortega & Yue Hao & Qi Zhang & Mark C. Walker & Wilfred A. van der Donk & Satish K. Nair, 2015. "Structure and mechanism of the tRNA-dependent lantibiotic dehydratase NisB," Nature, Nature, vol. 517(7535), pages 509-512, January.
    2. Sunil V. Sharma & Xiaoxue Tong & Cristina Pubill-Ulldemolins & Christopher Cartmell & Emma J. A. Bogosyan & Emma J. Rackham & Enrico Marelli & Refaat B. Hamed & Rebecca J. M. Goss, 2017. "Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    3. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    4. Fredarla S. Miller & Kathryn K. Crone & Matthew R. Jensen & Sudipta Shaw & William R. Harcombe & Mikael H. Elias & Michael F. Freeman, 2021. "Conformational rearrangements enable iterative backbone N-methylation in RiPP biosynthesis," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifan Li & Kai Shao & Zhaoxing Li & Kongfu Zhu & Bee Koon Gan & Jian Shi & Yibei Xiao & Min Luo, 2024. "Mechanistic insights into lanthipeptide modification by a distinct subclass of LanKC enzyme that forms dimers," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Tian Zhu & Merry H. Ma, 2022. "Deriving the Optimal Strategy for the Two Dice Pig Game via Reinforcement Learning," Stats, MDPI, vol. 5(3), pages 1-14, August.
    6. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    8. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Anthony C. Bishop & Glorisé Torres-Montalvo & Sravya Kotaru & Kyle Mimun & A. Joshua Wand, 2023. "Robust automated backbone triple resonance NMR assignments of proteins using Bayesian-based simulated annealing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Dick Schijven & Sourena Soheili-Nezhad & Simon E. Fisher & Clyde Francks, 2024. "Exome-wide analysis implicates rare protein-altering variants in human handedness," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Kevin B. Reed & Sierra M. Brooks & Jordan Wells & Kristin J. Blake & Minye Zhao & Kira Placido & Simon d’Oelsnitz & Adit Trivedi & Shruti Gadhiyar & Hal S. Alper, 2024. "A modular and synthetic biosynthesis platform for de novo production of diverse halogenated tryptophan-derived molecules," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Eliza S. Nieweglowska & Axel F. Brilot & Melissa Méndez-Moran & Claire Kokontis & Minkyung Baek & Junrui Li & Yifan Cheng & David Baker & Joseph Bondy-Denomy & David A. Agard, 2023. "The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Sash Lopaticki & Robyn McConville & Alan John & Niall Geoghegan & Shihab Deen Mohamed & Lisa Verzier & Ryan W. J. Steel & Cindy Evelyn & Matthew T. O’Neill & Niccolay Madiedo Soler & Nichollas E. Scot, 2022. "Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    20. Radoslaw Pluta & Eric Aragón & Nicholas A. Prescott & Lidia Ruiz & Rebeca A. Mees & Blazej Baginski & Julia R. Flood & Pau Martin-Malpartida & Joan Massagué & Yael David & Maria J. Macias, 2022. "Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45593-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.