IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45562-y.html
   My bibliography  Save this article

Hydraulic-driven adaptable morphing active-cooling elastomer with bioinspired bicontinuous phases

Author

Listed:
  • Dehai Yu

    (China Agricultural University)

  • Zhonghao Wang

    (China Agricultural University)

  • Guidong Chi

    (China Agricultural University)

  • Qiubo Zhang

    (China Agricultural University)

  • Junxian Fu

    (China Agricultural University)

  • Maolin Li

    (China Agricultural University)

  • Chuanke Liu

    (China Agricultural University)

  • Quan Zhou

    (China Agricultural University)

  • Zhen Li

    (China Agricultural University)

  • Du Chen

    (China Agricultural University)

  • Zhenghe Song

    (China Agricultural University)

  • Zhizhu He

    (China Agricultural University)

Abstract

The active-cooling elastomer concept, originating from vascular thermoregulation for soft biological tissue, is expected to develop an effective heat dissipation method for human skin, flexible electronics, and soft robots due to the desired interface mechanical compliance. However, its low thermal conduction and poor adaptation limit its cooling effects. Inspired by the bone structure, this work reports a simple yet versatile method of fabricating arbitrary-geometry liquid metal skeleton-based elastomer with bicontinuous Gyroid-shaped phases, exhibiting high thermal conductivity (up to 27.1 W/mK) and stretchability (strain limit >600%). Enlightened by the vasodilation principle for blood flow regulation, we also establish a hydraulic-driven conformal morphing strategy for better thermoregulation by modulating the hydraulic pressure of channels to adapt the complicated shape with large surface roughness (even a concave body). The liquid metal active-cooling elastomer, integrated with the flexible thermoelectric device, is demonstrated with various applications in the soft gripper, thermal-energy harvesting, and head thermoregulation.

Suggested Citation

  • Dehai Yu & Zhonghao Wang & Guidong Chi & Qiubo Zhang & Junxian Fu & Maolin Li & Chuanke Liu & Quan Zhou & Zhen Li & Du Chen & Zhenghe Song & Zhizhu He, 2024. "Hydraulic-driven adaptable morphing active-cooling elastomer with bioinspired bicontinuous phases," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45562-y
    DOI: 10.1038/s41467-024-45562-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45562-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45562-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lv, Jin-Ran & Ma, Jin-Lei & Dai, Lu & Yin, Tao & He, Zhi-Zhu, 2022. "A high-performance wearable thermoelectric generator with comprehensive optimization of thermal resistance and voltage boosting conversion," Applied Energy, Elsevier, vol. 312(C).
    2. Vito Cacucciolo & Jun Shintake & Yu Kuwajima & Shingo Maeda & Dario Floreano & Herbert Shea, 2019. "Stretchable pumps for soft machines," Nature, Nature, vol. 572(7770), pages 516-519, August.
    3. Ravi Anant Kishore & Amin Nozariasbmarz & Bed Poudel & Mohan Sanghadasa & Shashank Priya, 2019. "Ultra-high performance wearable thermoelectric coolers with less materials," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    4. Fredrick Kim & Beomjin Kwon & Youngho Eom & Ji Eun Lee & Sangmin Park & Seungki Jo & Sung Hoon Park & Bong-Seo Kim & Hye Jin Im & Min Ho Lee & Tae Sik Min & Kyung Tae Kim & Han Gi Chae & William P. Ki, 2018. "3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks," Nature Energy, Nature, vol. 3(4), pages 301-309, April.
    5. Seonggwang Yoo & Tianyu Yang & Minsu Park & Hyoyoung Jeong & Young Joong Lee & Donghwi Cho & Joohee Kim & Sung Soo Kwak & Jaeho Shin & Yoonseok Park & Yue Wang & Nenad Miljkovic & William P. King & Jo, 2023. "Responsive materials and mechanisms as thermal safety systems for skin-interfaced electronic devices," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Miao & Sijing Zhu & Chengyan Liu & Jie Gao & Zhongwei Zhang & Ying Peng & Jun-Liang Chen & Yangfan Gao & Jisheng Liang & Takao Mori, 2024. "Comfortable wearable thermoelectric generator with high output power," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Yin, Tao & He, Zhi-Zhu, 2021. "Analytical model-based optimization of the thermoelectric cooler with temperature-dependent materials under different operating conditions," Applied Energy, Elsevier, vol. 299(C).
    3. Xiaowen Sun & Yuedong Yan & Man Kang & Weiyun Zhao & Kaifen Yan & He Wang & Ranran Li & Shijie Zhao & Xiaoshe Hua & Boyi Wang & Weifeng Zhang & Yuan Deng, 2024. "General strategy for developing thick-film micro-thermoelectric coolers from material fabrication to device integration," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Zhang, Aibing & Pang, Dandan & Wang, Baolin & Wang, Ji, 2023. "Dynamic responses of wearable thermoelectric generators used for skin waste heat harvesting," Energy, Elsevier, vol. 262(PB).
    5. Liao, Tianjun & He, Qijiao & Xu, Qidong & Dai, Yawen & Cheng, Chun & Ni, Meng, 2021. "Coupling properties and parametric optimization of a photovoltaic panel driven thermoelectric refrigerators system," Energy, Elsevier, vol. 220(C).
    6. Chao Zhang & Zhuang Zhang & Yun Peng & Yanlin Zhang & Siqi An & Yunjie Wang & Zirui Zhai & Yan Xu & Hanqing Jiang, 2023. "Plug & play origami modules with all-purpose deformation modes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Liu, Kai & Tang, Xiaobin & Liu, Yunpeng & Xu, Zhiheng & Yuan, Zicheng & Zhang, Zhengrong, 2020. "Enhancing the performance of fully-scaled structure-adjustable 3D thermoelectric devices based on cold–press sintering and molding," Energy, Elsevier, vol. 206(C).
    8. Madruga, Santiago & Mendoza, Carolina, 2022. "Introducing a new concept for enhanced micro-energy harvesting of thermal fluctuations through the Marangoni effect," Applied Energy, Elsevier, vol. 306(PA).
    9. Vaithinathan Karthikeyan & James Utama Surjadi & Xiaocui Li & Rong Fan & Vaskuri C. S. Theja & Wen Jung Li & Yang Lu & Vellaisamy A. L. Roy, 2023. "Three dimensional architected thermoelectric devices with high toughness and power conversion efficiency," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Manuela Castañeda & Elkin I. Gutiérrez-Velásquez & Claudio E. Aguilar & Sergio Neves Monteiro & Andrés A. Amell & Henry A. Colorado, 2022. "Sustainability and Circular Economy Perspectives of Materials for Thermoelectric Modules," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    11. Yuan, Zicheng & Tang, Xiaobin & Xu, Zhiheng & Li, Junqin & Chen, Wang & Liu, Kai & Liu, Yunpeng & Zhang, Zhengrong, 2018. "Screen-printed radial structure micro radioisotope thermoelectric generator," Applied Energy, Elsevier, vol. 225(C), pages 746-754.
    12. Su, Ning & Zhu, Pengfei & Pan, Yuhui & Li, Fu & Li, Bo, 2020. "3D-printing of shape-controllable thermoelectric devices with enhanced output performance," Energy, Elsevier, vol. 195(C).
    13. Yang, Wenlong & Jin, Chenchen & Zhu, Wenchao & Li, Yang & Zhang, Rui & Huang, Liang & Xie, Changjun & Shi, Ying, 2024. "Taguchi optimization and thermoelectrical analysis of a pin fin annular thermoelectric generator for automotive waste heat recovery," Renewable Energy, Elsevier, vol. 220(C).
    14. Li, Yan, 2022. "A concentrated solar spectrum splitting photovoltaic cell-thermoelectric refrigerators combined system: Definition, combined system properties and performance evaluation," Energy, Elsevier, vol. 238(PC).
    15. Wu, Yongjia & Gao, Yahui & Wang, Caixia & Chen, Qiong & Ming, Tingzhen, 2023. "The energy saving performance of the thermal diode composite wall in different climate regions," Renewable Energy, Elsevier, vol. 219(P1).
    16. Matteo d’Angelo & Carmen Galassi & Nora Lecis, 2023. "Thermoelectric Materials and Applications: A Review," Energies, MDPI, vol. 16(17), pages 1-50, September.
    17. Ge, Ya & He, Kui & Xiao, Liehui & Yuan, Wuzhi & Huang, Si-Min, 2022. "Geometric optimization for the thermoelectric generator with variable cross-section legs by coupling finite element method and optimization algorithm," Renewable Energy, Elsevier, vol. 183(C), pages 294-303.
    18. Hanhwi Jang & Jong Bae Kim & Abbey Stanley & Suhyeon Lee & Yeongseon Kim & Sang Hyun Park & Min-Wook Oh, 2020. "Fabrication of Skutterudite-Based Tubular Thermoelectric Generator," Energies, MDPI, vol. 13(5), pages 1-11, March.
    19. Guorui Li & Tuck-Whye Wong & Benjamin Shih & Chunyu Guo & Luwen Wang & Jiaqi Liu & Tao Wang & Xiaobo Liu & Jiayao Yan & Baosheng Wu & Fajun Yu & Yunsai Chen & Yiming Liang & Yaoting Xue & Chengjun Wan, 2023. "Bioinspired soft robots for deep-sea exploration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Song Lv & Zuoqin Qian & Dengyun Hu & Xiaoyuan Li & Wei He, 2020. "A Comprehensive Review of Strategies and Approaches for Enhancing the Performance of Thermoelectric Module," Energies, MDPI, vol. 13(12), pages 1-24, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45562-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.