IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224027075.html
   My bibliography  Save this article

Investigation on the linear cooling method of microfluidic chip based on thermoelectric cooler

Author

Listed:
  • Sun, Dongfang
  • Han, Xue
  • Wang, Haoqing
  • Shen, Limei
  • Gao, Cai
  • Niu, Jingyu
  • Liu, Xiangnong
  • Ye, Jianming
  • Yao, Qiufeng

Abstract

Precise temperature regulation is a crucial guarantee for many microfluidic analyses. This study presents a linear cooling method of microfluidic chips based on a single TEC, which can achieve synchronous observation of samples. A numerical model was developed and experimentally verified to analyze the temperature responses under different driving current mechanisms of TEC. Based on simulation and experimental analysis, this study proposes to achieve linear cooling based on TEC driven by polynomial function current mechanism. The implementation process is clarified, and the iterative method to obtain the polynomial function current mechanism is provided and elaborated. Using a commercial TEC, the linear cooling of the microfluidic chip from 25.2 °C to −19.7 °C was successfully achieved through both simulation and experiment. The linear cooling rates ranging from 24 °C/min to 41 °C/min with linearity higher than 0.998 were obtained. Moreover, the influencing factors of linear cooling were discussed. It is found that the temperature of the TEC hot side has a significant impact on the linear cooling of the sample cell, while the impact of nitrogen gas temperature is almost negligible. Results also indicate that both the minimum and maximum cooling rates increase as TE-element length increases and TE-element height decreases.

Suggested Citation

  • Sun, Dongfang & Han, Xue & Wang, Haoqing & Shen, Limei & Gao, Cai & Niu, Jingyu & Liu, Xiangnong & Ye, Jianming & Yao, Qiufeng, 2024. "Investigation on the linear cooling method of microfluidic chip based on thermoelectric cooler," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027075
    DOI: 10.1016/j.energy.2024.132933
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224027075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132933?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sahngki Hong & Edward Dechaumphai & Courtney R. Green & Ratneshwar Lal & Anne N. Murphy & Christian M. Metallo & Renkun Chen, 2020. "Sub-nanowatt microfluidic single-cell calorimetry," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Ravi Anant Kishore & Amin Nozariasbmarz & Bed Poudel & Mohan Sanghadasa & Shashank Priya, 2019. "Ultra-high performance wearable thermoelectric coolers with less materials," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    3. Meng, Jing-Hui & Wang, Xiao-Dong & Zhang, Xin-Xin, 2013. "Transient modeling and dynamic characteristics of thermoelectric cooler," Applied Energy, Elsevier, vol. 108(C), pages 340-348.
    4. Ma, Xiaoli & Zhang, Yufeng & Han, Zhonghe & Zang, Ningbo & Liu, Zhijian, 2023. "Performance modelling on a thermoelectric air conditioning system using high power heat sinks and promoting waste heat utilization," Energy, Elsevier, vol. 268(C).
    5. Liu, Haowen & Zhao, Xudong & Li, Guiqiang & Ma, Xiaoli, 2022. "Investigation of a novel separately-configured micro-thermoelectric cooler to enabling extend application scope," Applied Energy, Elsevier, vol. 306(PB).
    6. Eric K. Sackmann & Anna L. Fulton & David J. Beebe, 2014. "The present and future role of microfluidics in biomedical research," Nature, Nature, vol. 507(7491), pages 181-189, March.
    7. Liu, Haowen & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli & Shen, Chao, 2023. "Investigation of the impact of the thermoelectric geometry on the cooling performance and thermal—mechanic characteristics in a thermoelectric cooler," Energy, Elsevier, vol. 267(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiao-Dong & Wang, Qiu-Hong & Xu, Jin-Liang, 2014. "Performance analysis of two-stage TECs (thermoelectric coolers) using a three-dimensional heat-electricity coupled model," Energy, Elsevier, vol. 65(C), pages 419-429.
    2. Xiaowen Sun & Yuedong Yan & Man Kang & Weiyun Zhao & Kaifen Yan & He Wang & Ranran Li & Shijie Zhao & Xiaoshe Hua & Boyi Wang & Weifeng Zhang & Yuan Deng, 2024. "General strategy for developing thick-film micro-thermoelectric coolers from material fabrication to device integration," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Jia, Xiao-Dong & Wang, Yuan-Jing & Gao, Yuan-Wen, 2017. "Numerical simulation of thermoelectric performance of linear-shaped thermoelectric generators under transient heat supply," Energy, Elsevier, vol. 130(C), pages 276-285.
    4. Zhang, Aibing & Pang, Dandan & Wang, Baolin & Wang, Ji, 2023. "Dynamic responses of wearable thermoelectric generators used for skin waste heat harvesting," Energy, Elsevier, vol. 262(PB).
    5. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    6. Alex J L Morgan & Lorena Hidalgo San Jose & William D Jamieson & Jennifer M Wymant & Bing Song & Phil Stephens & David A Barrow & Oliver K Castell, 2016. "Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    7. Shi, Zijie & Zhang, Kai & Jiang, Kaiyu & Li, Haoran & Ye, Peiliang & Yang, Haibin & Mahian, Omid, 2023. "Maximizing energy generation: A study of radiative cooling-based thermoelectric power devices," Energy, Elsevier, vol. 274(C).
    8. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    9. Jacobo Ayensa-Jiménez & Marina Pérez-Aliacar & Teodora Randelovic & José Antonio Sanz-Herrera & Mohamed H. Doweidar & Manuel Doblaré, 2020. "Analysis of the Parametric Correlation in Mathematical Modeling of In Vitro Glioblastoma Evolution Using Copulas," Mathematics, MDPI, vol. 9(1), pages 1-22, December.
    10. Lei Miao & Sijing Zhu & Chengyan Liu & Jie Gao & Zhongwei Zhang & Ying Peng & Jun-Liang Chen & Yangfan Gao & Jisheng Liang & Takao Mori, 2024. "Comfortable wearable thermoelectric generator with high output power," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Liu, Di & Zhao, Fu-Yun & Yang, Hongxing & Tang, Guang-Fa, 2015. "Theoretical and experimental investigations of thermoelectric heating system with multiple ventilation channels," Applied Energy, Elsevier, vol. 159(C), pages 458-468.
    12. Liao, Tianjun & He, Qijiao & Xu, Qidong & Dai, Yawen & Cheng, Chun & Ni, Meng, 2021. "Coupling properties and parametric optimization of a photovoltaic panel driven thermoelectric refrigerators system," Energy, Elsevier, vol. 220(C).
    13. Xuling Liu & Huafeng Song & Wensi Zuo & Guoyong Ye & Shaobo Jin & Liangwen Wang & Songjing Li, 2022. "Theoretical and Experimental Studies of a PDMS Pneumatic Microactuator for Microfluidic Systems," Energies, MDPI, vol. 15(22), pages 1-19, November.
    14. Ibáñez-Puy, Elia & Martín-Gómez, César & Bermejo-Busto, Javier & Zuazua-Ros, Amaia, 2018. "Thermal and energy performance assessment of a thermoelectric heat pump integrated in an adiabatic box," Applied Energy, Elsevier, vol. 228(C), pages 681-688.
    15. Madruga, Santiago & Mendoza, Carolina, 2022. "Introducing a new concept for enhanced micro-energy harvesting of thermal fluctuations through the Marangoni effect," Applied Energy, Elsevier, vol. 306(PA).
    16. Chen, Leisheng & Lee, Jaeyoung, 2015. "Effect of pulsed heat power on the thermal and electrical performances of a thermoelectric generator," Applied Energy, Elsevier, vol. 150(C), pages 138-149.
    17. Wang, Tian-Hu & Wang, Qiu-Hong & Leng, Chuan & Wang, Xiao-Dong, 2015. "Parameter analysis and optimal design for two-stage thermoelectric cooler," Applied Energy, Elsevier, vol. 154(C), pages 1-12.
    18. Montecucco, Andrea & Knox, Andrew R., 2014. "Accurate simulation of thermoelectric power generating systems," Applied Energy, Elsevier, vol. 118(C), pages 166-172.
    19. Yang, Tianyu & Ge, Tianshu, 2024. "Performance study of a heat pump fresh air unit based on desiccant coated heat exchangers under different operation strategies," Energy, Elsevier, vol. 296(C).
    20. Liu, Di & Zhao, Fu-Yun & Yang, Hong-Xing & Tang, Guang-Fa, 2015. "Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system," Energy, Elsevier, vol. 83(C), pages 29-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.