IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45070-z.html
   My bibliography  Save this article

A wearable electrostimulation-augmented ionic-gel photothermal patch doped with MXene for skin tumor treatment

Author

Listed:
  • Xingkai Ju

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Jiao Kong

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Guohua Qi

    (Chinese Academy of Sciences)

  • Shuping Hou

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Xingkang Diao

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Shaojun Dong

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Yongdong Jin

    (Chinese Academy of Sciences
    University of Science and Technology of China
    Shenzhen University)

Abstract

A wearable biological patch capable of producing multiple responses to light and electricity without interfering with daily activities is highly desired for skin cancer treatment, but remains a key challenge. Herein, the skin-mountable electrostimulation-augmented photothermal patch (eT-patch) comprising transparent ionic gel with MXene (Ti3C2Tx) doping is developed and applied for the treatment of melanoma under photostimulation at 0.5 W/cm2. The eT-patch designed has superior photothermal and electrical characteristics owing to ionic gels doped with MXene which provides high photothermal conversion efficiency and electrical conductivity as a medium. Simultaneously, the ionic gel-based eT-patch having excellent optical transparency actualizes real-time observation of skin response and melanoma treatment process under photothermal and electrical stimulation (PES) co-therapy. Systematical cellular study on anti-tumor mechanism of the eT-patch under PES treatment revealed that eT-patch under PES treatment can synergically trigger cancer cell apoptosis and pyroptosis, which together lead to the death of melanoma cells. Due to the obvious advantages of relatively safe and less side effects in healthy organs, the developed eT-patch provides a promising cost-effective therapeutic strategy for skin tumors and will open a new avenue for biomedical applications of ionic gels.

Suggested Citation

  • Xingkai Ju & Jiao Kong & Guohua Qi & Shuping Hou & Xingkang Diao & Shaojun Dong & Yongdong Jin, 2024. "A wearable electrostimulation-augmented ionic-gel photothermal patch doped with MXene for skin tumor treatment," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45070-z
    DOI: 10.1038/s41467-024-45070-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45070-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45070-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Haodong Liu & Chengfeng Du & Liling Liao & Hongjian Zhang & Haiqing Zhou & Weichang Zhou & Tianning Ren & Zhicheng Sun & Yufei Lu & Zhentao Nie & Feng Xu & Jixin Zhu & Wei Huang, 2022. "Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Yupeng Wang & Wenqing Gao & Xuyan Shi & Jingjin Ding & Wang Liu & Huabin He & Kun Wang & Feng Shao, 2017. "Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin," Nature, Nature, vol. 547(7661), pages 99-103, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuo Wang & An Song & Jun Xie & Yuan-Yuan Wang & Wen-Da Wang & Meng-Jie Zhang & Zhi-Zhong Wu & Qi-Chao Yang & Hao Li & Junjie Zhang & Zhi-Jun Sun, 2024. "Fn-OMV potentiates ZBP1-mediated PANoptosis triggered by oncolytic HSV-1 to fuel antitumor immunity," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Zhu, Ligang & Li, Xiang & Xu, Fei & Yin, Zhiyong & Jin, Jun & Liu, Zhilong & Qi, Hong & Shuai, Jianwei, 2022. "Network modeling-based identification of the switching targets between pyroptosis and secondary pyroptosis," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Fengxia Ma & Laxman Ghimire & Qian Ren & Yuping Fan & Tong Chen & Arumugam Balasubramanian & Alan Hsu & Fei Liu & Hongbo Yu & Xuemei Xie & Rong Xu & Hongbo R. Luo, 2024. "Gasdermin E dictates inflammatory responses by controlling the mode of neutrophil death," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Liang Zhang & An Song & Qi-Chao Yang & Shu-Jin Li & Shuo Wang & Shu-Cheng Wan & Jianwei Sun & Ryan T. K. Kwok & Jacky W. Y. Lam & Hexiang Deng & Ben Zhong Tang & Zhi-Jun Sun, 2023. "Integration of AIEgens into covalent organic frameworks for pyroptosis and ferroptosis primed cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Zhaoting Li & Fanyi Mo & Yixin Wang & Wen Li & Yu Chen & Jun Liu & Ting-Jing Chen-Mayfield & Quanyin Hu, 2022. "Enhancing Gasdermin-induced tumor pyroptosis through preventing ESCRT-dependent cell membrane repair augments antitumor immune response," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Joo-Hui Han & Rajendra Karki & R. K. Subbarao Malireddi & Raghvendra Mall & Roman Sarkar & Bhesh Raj Sharma & Jonathon Klein & Harmut Berns & Harshan Pisharath & Shondra M. Pruett-Miller & Sung-Jin Ba, 2024. "NINJ1 mediates inflammatory cell death, PANoptosis, and lethality during infection conditions and heat stress," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Mahmoud Wagih & Junjie Shi & Menglong Li & Abiodun Komolafe & Thomas Whittaker & Johannes Schneider & Shanmugam Kumar & William Whittow & Steve Beeby, 2024. "Wide-range soft anisotropic thermistor with a direct wireless radio frequency interface," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Jing Lin & Shihui Sun & Kui Zhao & Fei Gao & Renling Wang & Qi Li & Yanlong Zhou & Jing Zhang & Yue Li & Xinyue Wang & Le Du & Shuai Wang & Zi Li & Huijun Lu & Yungang Lan & Deguang Song & Wei Guo & Y, 2023. "Oncolytic Parapoxvirus induces Gasdermin E-mediated pyroptosis and activates antitumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Yuan Lu & Wenbo He & Xin Huang & Yu He & Xiaojuan Gou & Xiaoke Liu & Zhe Hu & Weize Xu & Khaista Rahman & Shan Li & Sheng Hu & Jie Luo & Gang Cao, 2021. "Strategies to package recombinant Adeno-Associated Virus expressing the N-terminal gasdermin domain for tumor treatment," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    10. Wenxi Huang & Qiongling Ding & Hao Wang & Zixuan Wu & Yibing Luo & Wenxiong Shi & Le Yang & Yujie Liang & Chuan Liu & Jin Wu, 2023. "Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Chaiheon Lee & Mingyu Park & W. C. Bhashini Wijesinghe & Seungjin Na & Chae Gyu Lee & Eunhye Hwang & Gwangsu Yoon & Jeong Kyeong Lee & Deok-Ho Roh & Yoon Hee Kwon & Jihyeon Yang & Sebastian A. Hughes , 2024. "Oxidative photocatalysis on membranes triggers non-canonical pyroptosis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Yuanyuan Wei & Beidi Lan & Tao Zheng & Lin Yang & Xiaoxia Zhang & Lele Cheng & Gulinigaer Tuerhongjiang & Zuyi Yuan & Yue Wu, 2023. "GSDME-mediated pyroptosis promotes the progression and associated inflammation of atherosclerosis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Ning Wang & Chao Liu & Yingjie Li & Dongxue Huang & Xinyue Wu & Xiaorong Kou & Xiye Wang & Qinjie Wu & Changyang Gong, 2023. "A cooperative nano-CRISPR scaffold potentiates immunotherapy via activation of tumour-intrinsic pyroptosis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Hanhan Ning & Shan Huang & Yang Lei & Renyong Zhi & Han Yan & Jiaxing Jin & Zhenyu Hu & Kaimin Guo & Jinhua Liu & Jie Yang & Zhe Liu & Yi Ba & Xin Gao & Deqing Hu, 2022. "Enhancer decommissioning by MLL4 ablation elicits dsRNA-interferon signaling and GSDMD-mediated pyroptosis to potentiate anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    15. Dao-Gong Zhang & Wen-Qian Yu & Jia-Hui Liu & Li-Gang Kong & Na Zhang & Yong-Dong Song & Xiao-Fei Li & Zhao-Min Fan & Ya-Feng Lyu & Na Li & Hai-Bo Wang, 2023. "Serum/glucocorticoid-inducible kinase 1 deficiency induces NLRP3 inflammasome activation and autoinflammation of macrophages in a murine endolymphatic hydrops model," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    16. Chen Ni & Xiaohan Lou & Xiaohan Yao & Linlin Wang & Jiajia Wan & Xixi Duan & Jialu Liang & Kaili Zhang & Yuanyuan Yang & Li Zhang & Chanjun Sun & Zhenzhen Li & Ming Wang & Linyu Zhu & Dekang Lv & Zhih, 2022. "ZIP1+ fibroblasts protect lung cancer against chemotherapy via connexin-43 mediated intercellular Zn2+ transfer," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    17. Stefania A. Mari & Kristyna Pluhackova & Joka Pipercevic & Matthew Leipner & Sebastian Hiller & Andreas Engel & Daniel J. Müller, 2022. "Gasdermin-A3 pore formation propagates along variable pathways," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Kei-ichiro Arimoto & Sayuri Miyauchi & Ty D. Troutman & Yue Zhang & Mengdan Liu & Samuel A. Stoner & Amanda G. Davis & Jun-Bao Fan & Yi-Jou Huang & Ming Yan & Christopher K. Glass & Dong-Er Zhang, 2023. "Expansion of interferon inducible gene pool via USP18 inhibition promotes cancer cell pyroptosis," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    19. Xionghui Ding & Hiroto Kambara & Rongxia Guo & Apurva Kanneganti & Maikel Acosta-Zaldívar & Jiajia Li & Fei Liu & Ting Bei & Wanjun Qi & Xuemei Xie & Wenli Han & Ningning Liu & Cunling Zhang & Xiaoyu , 2021. "Inflammasome-mediated GSDMD activation facilitates escape of Candida albicans from macrophages," Nature Communications, Nature, vol. 12(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45070-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.