IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51980-9.html
   My bibliography  Save this article

AI-powered omics-based drug pair discovery for pyroptosis therapy targeting triple-negative breast cancer

Author

Listed:
  • Boshu Ouyang

    (Fudan University
    Fudan University)

  • Caihua Shan

    (Microsoft Research Asia)

  • Shun Shen

    (Fudan University Pudong Medical Center)

  • Xinnan Dai

    (Microsoft Research Asia)

  • Qingwang Chen

    (Fudan University)

  • Xiaomin Su

    (Fudan University)

  • Yongbin Cao

    (Fudan University)

  • Xifeng Qin

    (Fudan University)

  • Ying He

    (Fudan University)

  • Siyu Wang

    (Fudan University)

  • Ruizhe Xu

    (Fudan University)

  • Ruining Hu

    (Fudan University)

  • Leming Shi

    (Fudan University)

  • Tun Lu

    (Fudan University)

  • Wuli Yang

    (Fudan University)

  • Shaojun Peng

    (Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University); Zhuhai)

  • Jun Zhang

    (Fudan University)

  • Jianxin Wang

    (Fudan University)

  • Dongsheng Li

    (Microsoft Research Asia)

  • Zhiqing Pang

    (Fudan University)

Abstract

Due to low success rates and long cycles of traditional drug development, the clinical tendency is to apply omics techniques to reveal patient-level disease characteristics and individualized responses to treatment. However, the heterogeneous form of data and uneven distribution of targets make drug discovery and precision medicine a non-trivial task. This study takes pyroptosis therapy for triple-negative breast cancer (TNBC) as a paradigm and uses data mining of a large TNBC cohort and drug databases to establish a biofactor-regulated neural network for rapidly screening and optimizing compound pyroptosis drug pairs. Subsequently, biomimetic nanococrystals are prepared using the preferred combination of mitoxantrone and gambogic acid for rational drug delivery. The unique mechanism of obtained nanococrystals regulating pyroptosis genes through ribosomal stress and triggering pyroptosis cascade immune effects are revealed in TNBC models. In this work, a target omics-based intelligent compound drug discovery framework explores an innovative drug development paradigm, which repurposes existing drugs and enables precise treatment of refractory diseases.

Suggested Citation

  • Boshu Ouyang & Caihua Shan & Shun Shen & Xinnan Dai & Qingwang Chen & Xiaomin Su & Yongbin Cao & Xifeng Qin & Ying He & Siyu Wang & Ruizhe Xu & Ruining Hu & Leming Shi & Tun Lu & Wuli Yang & Shaojun P, 2024. "AI-powered omics-based drug pair discovery for pyroptosis therapy targeting triple-negative breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51980-9
    DOI: 10.1038/s41467-024-51980-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51980-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51980-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arman A. Sadybekov & Anastasiia V. Sadybekov & Yongfeng Liu & Christos Iliopoulos-Tsoutsouvas & Xi-Ping Huang & Julie Pickett & Blake Houser & Nilkanth Patel & Ngan K. Tran & Fei Tong & Nikolai Zvonok, 2022. "Synthon-based ligand discovery in virtual libraries of over 11 billion compounds," Nature, Nature, vol. 601(7893), pages 452-459, January.
    2. Michael P. Menden & Dennis Wang & Mike J. Mason & Bence Szalai & Krishna C. Bulusu & Yuanfang Guan & Thomas Yu & Jaewoo Kang & Minji Jeon & Russ Wolfinger & Tin Nguyen & Mikhail Zaslavskiy & In Sock J, 2019. "Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
    3. Kosuke Yoshihara & Maria Shahmoradgoli & Emmanuel Martínez & Rahulsimham Vegesna & Hoon Kim & Wandaliz Torres-Garcia & Victor Treviño & Hui Shen & Peter W. Laird & Douglas A. Levine & Scott L. Carter , 2013. "Inferring tumour purity and stromal and immune cell admixture from expression data," Nature Communications, Nature, vol. 4(1), pages 1-11, December.
    4. Haitham A. Elmarakeby & Justin Hwang & Rand Arafeh & Jett Crowdis & Sydney Gang & David Liu & Saud H. AlDubayan & Keyan Salari & Steven Kregel & Camden Richter & Taylor E. Arnoff & Jihye Park & Willia, 2021. "Biologically informed deep neural network for prostate cancer discovery," Nature, Nature, vol. 598(7880), pages 348-352, October.
    5. Jieyu Wu & Xue Jiang & Yamei Li & Tingting Zhu & Jingjing Zhang & Zhiguo Zhang & Linqiang Zhang & Yuru Zhang & Yanli Wang & Xiaoju Zou & Bin Liang, 2018. "PHA-4/FoxA senses nucleolar stress to regulate lipid accumulation in Caenorhabditis elegans," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
    6. Yupeng Wang & Wenqing Gao & Xuyan Shi & Jingjin Ding & Wang Liu & Huabin He & Kun Wang & Feng Shao, 2017. "Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin," Nature, Nature, vol. 547(7661), pages 99-103, July.
    7. Gandomi, Amir & Haider, Murtaza, 2015. "Beyond the hype: Big data concepts, methods, and analytics," International Journal of Information Management, Elsevier, vol. 35(2), pages 137-144.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Ibrahim Aljumah & Mohammed T. Nuseir & Md. Mahmudul Alam, 2021. "Traditional marketing analytics, big data analytics and big data system quality and the success of new product development," Post-Print hal-03538161, HAL.
    2. Cano-Marin, Enrique & Mora-Cantallops, Marçal & Sánchez-Alonso, Salvador, 2023. "Twitter as a predictive system: A systematic literature review," Journal of Business Research, Elsevier, vol. 157(C).
    3. Zhongqi Fan & Xinchen Zou & Guangyi Wang & Yahui Liu & Yanfang Jiang & Haoyan Wang & Ping Zhang & Feng Wei & Xiaohong Du & Meng Wang & Xiaodong Sun & Bai Ji & Xintong Hu & Liguo Chen & Peiwen Zhou & D, 2024. "A transcriptome based molecular classification scheme for cholangiocarcinoma and subtype-derived prognostic biomarker," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    5. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    6. Lutfi, Abdalwali & Alrawad, Mahmaod & Alsyouf, Adi & Almaiah, Mohammed Amin & Al-Khasawneh, Ahmad & Al-Khasawneh, Akif Lutfi & Alshira'h, Ahmad Farhan & Alshirah, Malek Hamed & Saad, Mohamed & Ibrahim, 2023. "Drivers and impact of big data analytic adoption in the retail industry: A quantitative investigation applying structural equation modeling," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    7. Dongliang Bian & Liangdong Sun & Junjie Hu & Liang Duan & Haoran Xia & Xinsheng Zhu & Fenghuan Sun & Lele Zhang & Huansha Yu & Yicheng Xiong & Zhida Huang & Deping Zhao & Nan Song & Jie Yang & Xiao Ba, 2023. "Neoadjuvant Afatinib for stage III EGFR-mutant non-small cell lung cancer: a phase II study," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Shaoshuai Tang & Yunzhi Wang & Rongkui Luo & Rundong Fang & Yufeng Liu & Hang Xiang & Peng Ran & Yexin Tong & Mingjun Sun & Subei Tan & Wen Huang & Jie Huang & Jiacheng Lv & Ning Xu & Zhenmei Yao & Qi, 2024. "Proteomic characterization identifies clinically relevant subgroups of soft tissue sarcoma," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    9. Mohamed Gaber & Edward J. Lusk, 2019. "A Vetting Protocol for the Analytical Procedures Platform for the AP-Phase of PCAOB Audits," Accounting and Finance Research, Sciedu Press, vol. 8(4), pages 1-43, November.
    10. Acharya, Abhilash & Singh, Sanjay Kumar & Pereira, Vijay & Singh, Poonam, 2018. "Big data, knowledge co-creation and decision making in fashion industry," International Journal of Information Management, Elsevier, vol. 42(C), pages 90-101.
    11. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    12. Harkaran Kava & Konstantina Spanaki & Thanos Papadopoulos & Stella Despoudi & Oscar Rodriguez-Espindola & Masoud Fakhimi, 2021. "Data Analytics Diffusion in the UK Renewable Energy Sector: An Innovation Perspective," Post-Print hal-03781046, HAL.
    13. Oesterreich, Thuy Duong & Anton, Eduard & Teuteberg, Frank & Dwivedi, Yogesh K, 2022. "The role of the social and technical factors in creating business value from big data analytics: A meta-analysis," Journal of Business Research, Elsevier, vol. 153(C), pages 128-149.
    14. Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
    15. Judita Peterlin & Maja Meško & Vlado Dimovski & Vasja Roblek, 2021. "Automated content analysis: The review of the big data systemic discourse in tourism and hospitality," Systems Research and Behavioral Science, Wiley Blackwell, vol. 38(3), pages 377-385, May.
    16. Tiago Carneiro & Winnie Ng Picoto & Inês Pinto, 2023. "Big Data Analytics and Firm Performance in the Hotel Sector," Tourism and Hospitality, MDPI, vol. 4(2), pages 1-13, April.
    17. Gianfranco Marotta & Phillipe Krahnhof & Cam-Duc Au, 2022. "A Critical Analysis of Budgeting Processes from the Pharmaceutical Industry and Beyond," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(3), pages 1-3.
    18. Shuo Wang & An Song & Jun Xie & Yuan-Yuan Wang & Wen-Da Wang & Meng-Jie Zhang & Zhi-Zhong Wu & Qi-Chao Yang & Hao Li & Junjie Zhang & Zhi-Jun Sun, 2024. "Fn-OMV potentiates ZBP1-mediated PANoptosis triggered by oncolytic HSV-1 to fuel antitumor immunity," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Osama Musa Ali Al-Darras & Cem Tanova, 2022. "From Big Data Analytics to Organizational Agility: What Is the Mechanism?," SAGE Open, , vol. 12(2), pages 21582440221, June.
    20. Miikka Blomster & Timo Koivumäki, 2022. "Exploring the resources, competencies, and capabilities needed for successful machine learning projects in digital marketing," Information Systems and e-Business Management, Springer, vol. 20(1), pages 123-169, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51980-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.