IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45046-z.html
   My bibliography  Save this article

Structural basis for lysophosphatidylserine recognition by GPR34

Author

Listed:
  • Tamaki Izume

    (The University of Tokyo)

  • Ryo Kawahara

    (The University of Tokyo)

  • Akiharu Uwamizu

    (The University of Tokyo)

  • Luying Chen

    (The University of Tokyo)

  • Shun Yaginuma

    (The University of Tokyo)

  • Jumpei Omi

    (The University of Tokyo)

  • Hiroki Kawana

    (The University of Tokyo)

  • Fengjue Hou

    (The University of Tokyo)

  • Fumiya K. Sano

    (The University of Tokyo)

  • Tatsuki Tanaka

    (The University of Tokyo)

  • Kazuhiro Kobayashi

    (The University of Tokyo)

  • Hiroyuki H. Okamoto

    (The University of Tokyo)

  • Yoshiaki Kise

    (The University of Tokyo)

  • Tomohiko Ohwada

    (The University of Tokyo)

  • Junken Aoki

    (The University of Tokyo)

  • Wataru Shihoya

    (The University of Tokyo)

  • Osamu Nureki

    (The University of Tokyo)

Abstract

GPR34 is a recently identified G-protein coupled receptor, which has an immunomodulatory role and recognizes lysophosphatidylserine (LysoPS) as a putative ligand. Here, we report cryo-electron microscopy structures of human GPR34-Gi complex bound with one of two ligands bound: either the LysoPS analogue S3E-LysoPS, or M1, a derivative of S3E-LysoPS in which oleic acid is substituted with a metabolically stable aromatic fatty acid surrogate. The ligand-binding pocket is laterally open toward the membrane, allowing lateral entry of lipidic agonists into the cavity. The amine and carboxylate groups of the serine moiety are recognized by the charged residue cluster. The acyl chain of S3E-LysoPS is bent and fits into the L-shaped hydrophobic pocket in TM4-5 gap, and the aromatic fatty acid surrogate of M1 fits more appropriately. Molecular dynamics simulations further account for the LysoPS-regioselectivity of GPR34. Thus, using a series of structural and physiological experiments, we provide evidence that chemically unstable 2-acyl LysoPS is the physiological ligand for GPR34. Overall, we anticipate the present structures will pave the way for development of novel anticancer drugs that specifically target GPR34.

Suggested Citation

  • Tamaki Izume & Ryo Kawahara & Akiharu Uwamizu & Luying Chen & Shun Yaginuma & Jumpei Omi & Hiroki Kawana & Fengjue Hou & Fumiya K. Sano & Tatsuki Tanaka & Kazuhiro Kobayashi & Hiroyuki H. Okamoto & Yo, 2024. "Structural basis for lysophosphatidylserine recognition by GPR34," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45046-z
    DOI: 10.1038/s41467-024-45046-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45046-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45046-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kaihua Zhang & Jin Zhang & Zhan-Guo Gao & Dandan Zhang & Lan Zhu & Gye Won Han & Steven M. Moss & Silvia Paoletta & Evgeny Kiselev & Weizhen Lu & Gustavo Fenalti & Wenru Zhang & Christa E. Müller & Hu, 2014. "Structure of the human P2Y12 receptor in complex with an antithrombotic drug," Nature, Nature, vol. 509(7498), pages 115-118, May.
    2. A. J. Venkatakrishnan & Xavier Deupi & Guillaume Lebon & Christopher G. Tate & Gebhard F. Schertler & M. Madan Babu, 2013. "Molecular signatures of G-protein-coupled receptors," Nature, Nature, vol. 494(7436), pages 185-194, February.
    3. Hiroaki Akasaka & Tatsuki Tanaka & Fumiya K. Sano & Yuma Matsuzaki & Wataru Shihoya & Osamu Nureki, 2022. "Structure of the active Gi-coupled human lysophosphatidic acid receptor 1 complexed with a potent agonist," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Shian Liu & Navid Paknejad & Lan Zhu & Yasuyuki Kihara & Manisha Ray & Jerold Chun & Wei Liu & Richard K. Hite & Xin-Yun Huang, 2022. "Differential activation mechanisms of lipid GPCRs by lysophosphatidic acid and sphingosine 1-phosphate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Maoqing Dong & Giuseppe Deganutti & Sarah J. Piper & Yi-Lynn Liang & Maryam Khoshouei & Matthew J. Belousoff & Kaleeckal G. Harikumar & Christopher A. Reynolds & Alisa Glukhova & Sebastian G. B. Furne, 2020. "Structure and dynamics of the active Gs-coupled human secretin receptor," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    6. Jiale Liang & Asuka Inoue & Tatsuya Ikuta & Ruixue Xia & Na Wang & Kouki Kawakami & Zhenmei Xu & Yu Qian & Xinyan Zhu & Anqi Zhang & Changyou Guo & Zhiwei Huang & Yuanzheng He, 2023. "Structural basis of lysophosphatidylserine receptor GPR174 ligand recognition and activation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Wataru Shihoya & Tamaki Izume & Asuka Inoue & Keitaro Yamashita & Francois Marie Ngako Kadji & Kunio Hirata & Junken Aoki & Tomohiro Nishizawa & Osamu Nureki, 2018. "Crystal structures of human ETB receptor provide mechanistic insight into receptor activation and partial activation," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    8. Reiya Taniguchi & Asuka Inoue & Misa Sayama & Akiharu Uwamizu & Keitaro Yamashita & Kunio Hirata & Masahito Yoshida & Yoshiki Tanaka & Hideaki E. Kato & Yoshiko Nakada-Nakura & Yuko Otani & Tomohiro N, 2017. "Structural insights into ligand recognition by the lysophosphatidic acid receptor LPA6," Nature, Nature, vol. 548(7667), pages 356-360, August.
    9. Wataru Shihoya & Tomohiro Nishizawa & Akiko Okuta & Kazutoshi Tani & Naoshi Dohmae & Yoshinori Fujiyoshi & Osamu Nureki & Tomoko Doi, 2016. "Activation mechanism of endothelin ETB receptor by endothelin-1," Nature, Nature, vol. 537(7620), pages 363-368, September.
    10. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    11. Jin Zhang & Kaihua Zhang & Zhan-Guo Gao & Silvia Paoletta & Dandan Zhang & Gye Won Han & Tingting Li & Limin Ma & Wenru Zhang & Christa E. Müller & Huaiyu Yang & Hualiang Jiang & Vadim Cherezov & Vsev, 2014. "Agonist-bound structure of the human P2Y12 receptor," Nature, Nature, vol. 509(7498), pages 119-122, May.
    12. Antoine Koehl & Hongli Hu & Shoji Maeda & Yan Zhang & Qianhui Qu & Joseph M. Paggi & Naomi R. Latorraca & Daniel Hilger & Roger Dawson & Hugues Matile & Gebhard F. X. Schertler & Sebastien Granier & W, 2018. "Structure of the µ-opioid receptor–Gi protein complex," Nature, Nature, vol. 558(7711), pages 547-552, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hiroaki Akasaka & Tatsuki Tanaka & Fumiya K. Sano & Yuma Matsuzaki & Wataru Shihoya & Osamu Nureki, 2022. "Structure of the active Gi-coupled human lysophosphatidic acid receptor 1 complexed with a potent agonist," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Shota Suzuki & Kotaro Tanaka & Kouki Nishikawa & Hiroshi Suzuki & Atsunori Oshima & Yoshinori Fujiyoshi, 2023. "Structural basis of hydroxycarboxylic acid receptor signaling mechanisms through ligand binding," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Aika Iwama & Ryoji Kise & Hiroaki Akasaka & Fumiya K. Sano & Hidetaka S. Oshima & Asuka Inoue & Wataru Shihoya & Osamu Nureki, 2024. "Structure and dynamics of the pyroglutamylated RF-amide peptide QRFP receptor GPR103," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Yujie Ji & Jia Duan & Qingning Yuan & Xinheng He & Gong Yang & Shengnan Zhu & Kai Wu & Wen Hu & Tianyu Gao & Xi Cheng & Hualiang Jiang & H. Eric Xu & Yi Jiang, 2023. "Structural basis of peptide recognition and activation of endothelin receptors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Chaehee Park & Jinuk Kim & Seung-Bum Ko & Yeol Kyo Choi & Hyeongseop Jeong & Hyeonuk Woo & Hyunook Kang & Injin Bang & Sang Ah Kim & Tae-Young Yoon & Chaok Seok & Wonpil Im & Hee-Jung Choi, 2022. "Structural basis of neuropeptide Y signaling through Y1 receptor," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Jiale Liang & Asuka Inoue & Tatsuya Ikuta & Ruixue Xia & Na Wang & Kouki Kawakami & Zhenmei Xu & Yu Qian & Xinyan Zhu & Anqi Zhang & Changyou Guo & Zhiwei Huang & Yuanzheng He, 2023. "Structural basis of lysophosphatidylserine receptor GPR174 ligand recognition and activation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Xuan Zhang & Yujing Wang & Shreyas Supekar & Xu Cao & Jingkai Zhou & Jessica Dang & Siqi Chen & Laura Jenkins & Sara Marsango & Xiu Li & Guibing Liu & Graeme Milligan & Mingye Feng & Hao Fan & Weimin , 2023. "Pro-phagocytic function and structural basis of GPR84 signaling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Yingying Nie & Zeming Qiu & Sijia Chen & Zhao Chen & Xiaocui Song & Yan Ma & Niu Huang & Jason G. Cyster & Sanduo Zheng, 2023. "Specific binding of GPR174 by endogenous lysophosphatidylserine leads to high constitutive Gs signaling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Yuxia Qian & Jiening Wang & Linlin Yang & Yanru Liu & Lina Wang & Wei Liu & Yun Lin & Hong Yang & Lixin Ma & Sheng Ye & Shan Wu & Anna Qiao, 2022. "Activation and signaling mechanism revealed by GPR119-Gs complex structures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Tian Zhu & Merry H. Ma, 2022. "Deriving the Optimal Strategy for the Two Dice Pig Game via Reinforcement Learning," Stats, MDPI, vol. 5(3), pages 1-14, August.
    14. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    16. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Anthony C. Bishop & Glorisé Torres-Montalvo & Sravya Kotaru & Kyle Mimun & A. Joshua Wand, 2023. "Robust automated backbone triple resonance NMR assignments of proteins using Bayesian-based simulated annealing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45046-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.