IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07094-0.html
   My bibliography  Save this article

Crystal structures of human ETB receptor provide mechanistic insight into receptor activation and partial activation

Author

Listed:
  • Wataru Shihoya

    (The University of Tokyo)

  • Tamaki Izume

    (The University of Tokyo)

  • Asuka Inoue

    (Tohoku University)

  • Keitaro Yamashita

    (The University of Tokyo
    RIKEN SPring-8 Center)

  • Francois Marie Ngako Kadji

    (Tohoku University)

  • Kunio Hirata

    (RIKEN SPring-8 Center)

  • Junken Aoki

    (Tohoku University
    Core Research for Evolutional Science and Technology (AMED-CREST))

  • Tomohiro Nishizawa

    (The University of Tokyo)

  • Osamu Nureki

    (The University of Tokyo)

Abstract

Endothelin receptors (ETA and ETB) are class A GPCRs activated by vasoactive peptide endothelins, and are involved in blood pressure regulation. ETB-selective signalling induces vasorelaxation, and thus selective ETB agonists are expected to be utilized for improved anti-tumour drug delivery and neuroprotection. Here, we report the crystal structures of human ETB receptor in complex with ETB-selective agonist, endothelin-3 and an ETB-selective endothelin analogue IRL1620. The structure of the endothelin-3-bound receptor reveals that the disruption of water-mediated interactions between W6.48 and D2.50 is critical for receptor activation, while these hydrogen-bonding interactions are partially preserved in the IRL1620-bound structure. Consistently, functional analysis reveals the partial agonistic effect of IRL1620. The current findings clarify the detailed molecular mechanism for the coupling between the orthosteric pocket and the G-protein binding, and the partial agonistic effect of IRL1620, thus paving the way for the design of improved agonistic drugs targeting ETB.

Suggested Citation

  • Wataru Shihoya & Tamaki Izume & Asuka Inoue & Keitaro Yamashita & Francois Marie Ngako Kadji & Kunio Hirata & Junken Aoki & Tomohiro Nishizawa & Osamu Nureki, 2018. "Crystal structures of human ETB receptor provide mechanistic insight into receptor activation and partial activation," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07094-0
    DOI: 10.1038/s41467-018-07094-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07094-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07094-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamaki Izume & Ryo Kawahara & Akiharu Uwamizu & Luying Chen & Shun Yaginuma & Jumpei Omi & Hiroki Kawana & Fengjue Hou & Fumiya K. Sano & Tatsuki Tanaka & Kazuhiro Kobayashi & Hiroyuki H. Okamoto & Yo, 2024. "Structural basis for lysophosphatidylserine recognition by GPR34," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Yujie Ji & Jia Duan & Qingning Yuan & Xinheng He & Gong Yang & Shengnan Zhu & Kai Wu & Wen Hu & Tianyu Gao & Xi Cheng & Hualiang Jiang & H. Eric Xu & Yi Jiang, 2023. "Structural basis of peptide recognition and activation of endothelin receptors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Hiroaki Akasaka & Tatsuki Tanaka & Fumiya K. Sano & Yuma Matsuzaki & Wataru Shihoya & Osamu Nureki, 2022. "Structure of the active Gi-coupled human lysophosphatidic acid receptor 1 complexed with a potent agonist," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Tobias Benkel & Mirjam Zimmermann & Julian Zeiner & Sergi Bravo & Nicole Merten & Victor Jun Yu Lim & Edda Sofie Fabienne Matthees & Julia Drube & Elke Miess-Tanneberg & Daniela Malan & Martyna Szpako, 2022. "How Carvedilol activates β2-adrenoceptors," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    5. Chaehee Park & Jinuk Kim & Seung-Bum Ko & Yeol Kyo Choi & Hyeongseop Jeong & Hyeonuk Woo & Hyunook Kang & Injin Bang & Sang Ah Kim & Tae-Young Yoon & Chaok Seok & Wonpil Im & Hee-Jung Choi, 2022. "Structural basis of neuropeptide Y signaling through Y1 receptor," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07094-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.