IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44993-x.html
   My bibliography  Save this article

Bioinspired handheld time-share driven robot with expandable DoFs

Author

Listed:
  • Yunjiang Wang

    (Zhejiang University)

  • Xinben Hu

    (Second Affiliated Hospital of Zhejiang University School of Medicine
    Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases)

  • Luhang Cui

    (Zhejiang University)

  • Xuan Xiao

    (Zhejiang University)

  • Keji Yang

    (Zhejiang University)

  • Yongjian Zhu

    (Second Affiliated Hospital of Zhejiang University School of Medicine
    Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases)

  • Haoran Jin

    (Zhejiang University)

Abstract

Handheld robots offer accessible solutions with a short learning curve to enhance operator capabilities. However, their controllable degree-of-freedoms are limited due to scarce space for actuators. Inspired by muscle movements stimulated by nerves, we report a handheld time-share driven robot. It comprises several motion modules, all powered by a single motor. Shape memory alloy (SMA) wires, acting as “nerves”, connect to motion modules, enabling the selection of the activated module. The robot contains a 202-gram motor base and a 0.8 cm diameter manipulator comprised of sequentially linked bending modules (BM). The manipulator can be tailored in length and integrated with various instruments in situ, facilitating non-invasive access and high-dexterous operation at remote surgical sites. The applicability was demonstrated in clinical scenarios, where a surgeon held the robot to conduct transluminal experiments on a human stomach model and an ex vivo porcine stomach. The time-share driven mechanism offers a pragmatic approach to build a multi-degree-of-freedom robot for broader applications.

Suggested Citation

  • Yunjiang Wang & Xinben Hu & Luhang Cui & Xuan Xiao & Keji Yang & Yongjian Zhu & Haoran Jin, 2024. "Bioinspired handheld time-share driven robot with expandable DoFs," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44993-x
    DOI: 10.1038/s41467-024-44993-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44993-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44993-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Indrek Must & Edoardo Sinibaldi & Barbara Mazzolai, 2019. "A variable-stiffness tendril-like soft robot based on reversible osmotic actuation," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    2. Wenbo Liu & Youning Duo & Jiaqi Liu & Feiyang Yuan & Lei Li & Luchen Li & Gang Wang & Bohan Chen & Siqi Wang & Hui Yang & Yuchen Liu & Yanru Mo & Yun Wang & Bin Fang & Fuchun Sun & Xilun Ding & Chi Zh, 2022. "Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Michael Wehner & Ryan L. Truby & Daniel J. Fitzgerald & Bobak Mosadegh & George M. Whitesides & Jennifer A. Lewis & Robert J. Wood, 2016. "An integrated design and fabrication strategy for entirely soft, autonomous robots," Nature, Nature, vol. 536(7617), pages 451-455, August.
    4. Manuel Schaffner & Jakob A. Faber & Lucas Pianegonda & Patrick A. Rühs & Fergal Coulter & André R. Studart, 2018. "3D printing of robotic soft actuators with programmable bioinspired architectures," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    5. Byungjeon Kang & Risto Kojcev & Edoardo Sinibaldi, 2016. "The First Interlaced Continuum Robot, Devised to Intrinsically Follow the Leader," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Tang & Yiding Zhong & Huxiu Xu & Kecheng Qin & Xinyu Guo & Yu Hu & Pingan Zhu & Yang Qu & Dong Yan & Zhaoyang Li & Zhongdong Jiao & Xujun Fan & Huayong Yang & Jun Zou, 2023. "Self-protection soft fluidic robots with rapid large-area self-healing capabilities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Tie Mei & Zhiqiang Meng & Kejie Zhao & Chang Qing Chen, 2021. "A mechanical metamaterial with reprogrammable logical functions," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Cheng, Quanbao & Zhou, Lin & Du, Changshen & Li, Kai, 2022. "A light-fueled self-oscillating liquid crystal elastomer balloon with self-shading effect," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    4. Baofu Ding & Pengyuan Zeng & Ziyang Huang & Lixin Dai & Tianshu Lan & Hao Xu & Yikun Pan & Yuting Luo & Qiangmin Yu & Hui-Ming Cheng & Bilu Liu, 2022. "A 2D material–based transparent hydrogel with engineerable interference colours," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Chao Zhang & Zhuang Zhang & Yun Peng & Yanlin Zhang & Siqi An & Yunjie Wang & Zirui Zhai & Yan Xu & Hanqing Jiang, 2023. "Plug & play origami modules with all-purpose deformation modes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Liang Yue & S. Macrae Montgomery & Xiaohao Sun & Luxia Yu & Yuyang Song & Tsuyoshi Nomura & Masato Tanaka & H. Jerry Qi, 2023. "Single-vat single-cure grayscale digital light processing 3D printing of materials with large property difference and high stretchability," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Hayato Saigo & Makoto Naruse & Kazuya Okamura & Hirokazu Hori & Izumi Ojima, 2019. "Analysis of Soft Robotics Based on the Concept of Category of Mobility," Complexity, Hindawi, vol. 2019, pages 1-12, March.
    10. Van Hiep Nguyen & Saewoong Oh & Manmatha Mahato & Rassoul Tabassian & Hyunjoon Yoo & Seong-Gyu Lee & Mousumi Garai & Kwang Jin Kim & Il-Kwon Oh, 2024. "Functionally antagonistic polyelectrolyte for electro-ionic soft actuator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Wenzhong Yan & Shuguang Li & Mauricio Deguchi & Zhaoliang Zheng & Daniela Rus & Ankur Mehta, 2023. "Origami-based integration of robots that sense, decide, and respond," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Pei Zhang & Iek Man Lei & Guangda Chen & Jingsen Lin & Xingmei Chen & Jiajun Zhang & Chengcheng Cai & Xiangyu Liang & Ji Liu, 2022. "Integrated 3D printing of flexible electroluminescent devices and soft robots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Xuechuan Wang & Yongyue Wang & Mingzhu Zhu & Xiaokui Yue, 2024. "2-dimensional impact-damping electrostatic actuators with elastomer-enhanced auxetic structure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Tie Mei & Chang Qing Chen, 2023. "In-memory mechanical computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Shibo Zou & Sergio Picella & Jelle Vries & Vera G. Kortman & Aimée Sakes & Johannes T. B. Overvelde, 2024. "A retrofit sensing strategy for soft fluidic robots," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Minho Seong & Kahyun Sun & Somi Kim & Hyukjoo Kwon & Sang-Woo Lee & Sarath Chandra Veerla & Dong Kwan Kang & Jaeil Kim & Stalin Kondaveeti & Salah M. Tawfik & Hyung Wook Park & Hoon Eui Jeong, 2024. "Multifunctional Magnetic Muscles for Soft Robotics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Ruohong Shi & Kuan-Lin Chen & Joshua Fern & Siming Deng & Yixin Liu & Dominic Scalise & Qi Huang & Noah J. Cowan & David H. Gracias & Rebecca Schulman, 2024. "Programming gel automata shapes using DNA instructions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Yaoye Hong & Yao Zhao & Joseph Berman & Yinding Chi & Yanbin Li & He (Helen) Huang & Jie Yin, 2023. "Angle-programmed tendril-like trajectories enable a multifunctional gripper with ultradelicacy, ultrastrength, and ultraprecision," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Guorui Li & Tuck-Whye Wong & Benjamin Shih & Chunyu Guo & Luwen Wang & Jiaqi Liu & Tao Wang & Xiaobo Liu & Jiayao Yan & Baosheng Wu & Fajun Yu & Yunsai Chen & Yiming Liang & Yaoting Xue & Chengjun Wan, 2023. "Bioinspired soft robots for deep-sea exploration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Qingrui Wang & Xiaoyong Tian & Daokang Zhang & Yanli Zhou & Wanquan Yan & Dichen Li, 2023. "Programmable spatial deformation by controllable off-center freestanding 4D printing of continuous fiber reinforced liquid crystal elastomer composites," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44993-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.