IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0235229.html
   My bibliography  Save this article

Dynamic modeling of dielectric elastomer actuator with conical shape

Author

Listed:
  • Peng Huang
  • Wenjun Ye
  • Yawu Wang

Abstract

With desirable physical performances of impressive actuation strain, high energy density, high degree of electromechanical coupling and high mechanical compliance, dielectric elastomer actuators (DEAs) are widely employed to actuate the soft robots. However, there are many challenges to establish the dynamic models for DEAs, such as their inherent nonlinearity, complex electromechanical coupling, and time-dependent viscoelastic behavior. Moreover, most previous studies concentrated on the planar DEAs, but the studies on DEAs with some other functional shapes are insufficient. In this paper, by investigating a conical DEA with the material of polydimethylsiloxane and considering the influence of inertia, we propose a dynamic model based on the principles of nonequilibrium thermodynamics. This dynamic model can describe the complex motion characteristics of the conical DEA. Based on the experimental data, the differential evolution algorithm is employed to identify the undetermined parameters of the developed dynamic model. The result of the model validation demonstrates the effectiveness of the model.

Suggested Citation

  • Peng Huang & Wenjun Ye & Yawu Wang, 2020. "Dynamic modeling of dielectric elastomer actuator with conical shape," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-18, August.
  • Handle: RePEc:plo:pone00:0235229
    DOI: 10.1371/journal.pone.0235229
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235229
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235229&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0235229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Wehner & Ryan L. Truby & Daniel J. Fitzgerald & Bobak Mosadegh & George M. Whitesides & Jennifer A. Lewis & Robert J. Wood, 2016. "An integrated design and fabrication strategy for entirely soft, autonomous robots," Nature, Nature, vol. 536(7617), pages 451-455, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tie Mei & Zhiqiang Meng & Kejie Zhao & Chang Qing Chen, 2021. "A mechanical metamaterial with reprogrammable logical functions," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Cheng, Quanbao & Zhou, Lin & Du, Changshen & Li, Kai, 2022. "A light-fueled self-oscillating liquid crystal elastomer balloon with self-shading effect," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Baofu Ding & Pengyuan Zeng & Ziyang Huang & Lixin Dai & Tianshu Lan & Hao Xu & Yikun Pan & Yuting Luo & Qiangmin Yu & Hui-Ming Cheng & Bilu Liu, 2022. "A 2D material–based transparent hydrogel with engineerable interference colours," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Yunjiang Wang & Xinben Hu & Luhang Cui & Xuan Xiao & Keji Yang & Yongjian Zhu & Haoran Jin, 2024. "Bioinspired handheld time-share driven robot with expandable DoFs," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Hayato Saigo & Makoto Naruse & Kazuya Okamura & Hirokazu Hori & Izumi Ojima, 2019. "Analysis of Soft Robotics Based on the Concept of Category of Mobility," Complexity, Hindawi, vol. 2019, pages 1-12, March.
    8. Van Hiep Nguyen & Saewoong Oh & Manmatha Mahato & Rassoul Tabassian & Hyunjoon Yoo & Seong-Gyu Lee & Mousumi Garai & Kwang Jin Kim & Il-Kwon Oh, 2024. "Functionally antagonistic polyelectrolyte for electro-ionic soft actuator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Wenzhong Yan & Shuguang Li & Mauricio Deguchi & Zhaoliang Zheng & Daniela Rus & Ankur Mehta, 2023. "Origami-based integration of robots that sense, decide, and respond," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Pei Zhang & Iek Man Lei & Guangda Chen & Jingsen Lin & Xingmei Chen & Jiajun Zhang & Chengcheng Cai & Xiangyu Liang & Ji Liu, 2022. "Integrated 3D printing of flexible electroluminescent devices and soft robots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Xuechuan Wang & Yongyue Wang & Mingzhu Zhu & Xiaokui Yue, 2024. "2-dimensional impact-damping electrostatic actuators with elastomer-enhanced auxetic structure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Tie Mei & Chang Qing Chen, 2023. "In-memory mechanical computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Shibo Zou & Sergio Picella & Jelle Vries & Vera G. Kortman & Aimée Sakes & Johannes T. B. Overvelde, 2024. "A retrofit sensing strategy for soft fluidic robots," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Minho Seong & Kahyun Sun & Somi Kim & Hyukjoo Kwon & Sang-Woo Lee & Sarath Chandra Veerla & Dong Kwan Kang & Jaeil Kim & Stalin Kondaveeti & Salah M. Tawfik & Hyung Wook Park & Hoon Eui Jeong, 2024. "Multifunctional Magnetic Muscles for Soft Robotics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Ruohong Shi & Kuan-Lin Chen & Joshua Fern & Siming Deng & Yixin Liu & Dominic Scalise & Qi Huang & Noah J. Cowan & David H. Gracias & Rebecca Schulman, 2024. "Programming gel automata shapes using DNA instructions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Guorui Li & Tuck-Whye Wong & Benjamin Shih & Chunyu Guo & Luwen Wang & Jiaqi Liu & Tao Wang & Xiaobo Liu & Jiayao Yan & Baosheng Wu & Fajun Yu & Yunsai Chen & Yiming Liang & Yaoting Xue & Chengjun Wan, 2023. "Bioinspired soft robots for deep-sea exploration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Shahram Janbaz & Corentin Coulais, 2024. "Diffusive kinks turn kirigami into machines," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Wenbo Liu & Youning Duo & Jiaqi Liu & Feiyang Yuan & Lei Li & Luchen Li & Gang Wang & Bohan Chen & Siqi Wang & Hui Yang & Yuchen Liu & Yanru Mo & Yun Wang & Bin Fang & Fuchun Sun & Xilun Ding & Chi Zh, 2022. "Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Chen Xin & Zhongguo Ren & Leran Zhang & Liang Yang & Dawei Wang & Yanlei Hu & Jiawen Li & Jiaru Chu & Li Zhang & Dong Wu, 2023. "Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Sajjad Rahmani Dabbagh & Misagh Rezapour Sarabi & Mehmet Tugrul Birtek & Siamak Seyfi & Metin Sitti & Savas Tasoglu, 2022. "3D-printed microrobots from design to translation," Nature Communications, Nature, vol. 13(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0235229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.