IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0150278.html
   My bibliography  Save this article

The First Interlaced Continuum Robot, Devised to Intrinsically Follow the Leader

Author

Listed:
  • Byungjeon Kang
  • Risto Kojcev
  • Edoardo Sinibaldi

Abstract

Flexible probes that are safely deployed to hard-to-reach targets while avoiding critical structures are strategic in several high-impact application fields, including the biomedical sector and the sector of inspections at large. A critical problem for these tools is the best approach for deploying an entire tool body, not only its tip, on a sought trajectory. A probe that achieves this deployment is considered to follow the leader (or to achieve follow-the-leader deployment) because its body sections follow the track traced by its tip. Follow-the-leader deployment through cavities is complicated due to a lack of external supports. Currently, no definitive implementation for a probe that is intrinsically able to follow the leader, i.e., without relying on external supports, has been achieved. In this paper, we present a completely new device, namely the first interlaced continuum robot, devised to intrinsically follow the leader. We developed the interlaced configuration by pursuing a conceptual approach irrespective of application-specific constraints and assuming two flexible tools with controllable stiffness. We questioned the possibility of solving the previously mentioned deployment problem by harnessing probe symmetry during the design process. This study examines the entire development of the novel interlaced probe: model-based conceptual design, detailed design and prototyping, and preliminary experimental assessment. Our probe can build a track with a radius of curvature that is as small as twice the probe diameter, which enables it to outperform state-of-the-art tools that are aimed at follow-the-leader deployment. Despite the limitations that are inherently associated with its original character, this study provides a prototypical approach to the design of interlaced continuum systems and demonstrates the first interlaced continuum probe, which is intrinsically able to follow the leader.

Suggested Citation

  • Byungjeon Kang & Risto Kojcev & Edoardo Sinibaldi, 2016. "The First Interlaced Continuum Robot, Devised to Intrinsically Follow the Leader," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-16, February.
  • Handle: RePEc:plo:pone00:0150278
    DOI: 10.1371/journal.pone.0150278
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150278
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0150278&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0150278?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunjiang Wang & Xinben Hu & Luhang Cui & Xuan Xiao & Keji Yang & Yongjian Zhu & Haoran Jin, 2024. "Bioinspired handheld time-share driven robot with expandable DoFs," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0150278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.