IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-018-08173-y.html
   My bibliography  Save this article

A variable-stiffness tendril-like soft robot based on reversible osmotic actuation

Author

Listed:
  • Indrek Must

    (Center for Micro-BioRobotics, Istituto Italiano di Tecnologia (IIT)
    University of Tartu)

  • Edoardo Sinibaldi

    (Center for Micro-BioRobotics, Istituto Italiano di Tecnologia (IIT))

  • Barbara Mazzolai

    (Center for Micro-BioRobotics, Istituto Italiano di Tecnologia (IIT))

Abstract

Soft robots hold promise for well-matched interactions with delicate objects, humans and unstructured environments owing to their intrinsic material compliance. Movement and stiffness modulation, which is challenging yet needed for an effective demonstration, can be devised by drawing inspiration from plants. Plants use a coordinated and reversible modulation of intracellular turgor (pressure) to tune their stiffness and achieve macroscopic movements. Plant-inspired osmotic actuation was recently proposed, yet reversibility is still an open issue hampering its implementation, also in soft robotics. Here we show a reversible osmotic actuation strategy based on the electrosorption of ions on flexible porous carbon electrodes driven at low input voltages (1.3 V). We demonstrate reversible stiffening (~5-fold increase) and actuation (~500 deg rotation) of a tendril-like soft robot (diameter ~1 mm). Our approach highlights the potential of plant-inspired technologies for developing soft robots based on biocompatible materials and safe voltages making them appealing for prospective applications.

Suggested Citation

  • Indrek Must & Edoardo Sinibaldi & Barbara Mazzolai, 2019. "A variable-stiffness tendril-like soft robot based on reversible osmotic actuation," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08173-y
    DOI: 10.1038/s41467-018-08173-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-08173-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-08173-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaoye Hong & Yao Zhao & Joseph Berman & Yinding Chi & Yanbin Li & He (Helen) Huang & Jie Yin, 2023. "Angle-programmed tendril-like trajectories enable a multifunctional gripper with ultradelicacy, ultrastrength, and ultraprecision," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yunjiang Wang & Xinben Hu & Luhang Cui & Xuan Xiao & Keji Yang & Yongjian Zhu & Haoran Jin, 2024. "Bioinspired handheld time-share driven robot with expandable DoFs," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08173-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.