IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44836-9.html
   My bibliography  Save this article

Dorsal hippocampus to nucleus accumbens projections drive reinforcement via activation of accumbal dynorphin neurons

Author

Listed:
  • Khairunisa Mohamad Ibrahim

    (Washington University Pain Center
    Washington University in St. Louis, School of Medicine)

  • Nicolas Massaly

    (Washington University Pain Center
    Washington University in St. Louis, School of Medicine
    University of California)

  • Hye-Jean Yoon

    (Washington University Pain Center
    Washington University in St. Louis, School of Medicine)

  • Rossana Sandoval

    (Washington University Pain Center
    Washington University in St. Louis, School of Medicine)

  • Allie J. Widman

    (Washington University Pain Center
    Washington University in St. Louis, School of Medicine)

  • Robert J. Heuermann

    (Washington University Pain Center
    Washington University in St. Louis, School of Medicine
    Washington University Pain Center)

  • Sidney Williams

    (Washington University Pain Center
    Washington University in St. Louis, School of Medicine)

  • William Post

    (Washington University Pain Center
    Washington University in St. Louis, School of Medicine)

  • Sulan Pathiranage

    (Washington University Pain Center
    Washington University in St. Louis, School of Medicine)

  • Tania Lintz

    (Washington University Pain Center
    Washington University in St. Louis, School of Medicine)

  • Azra Zec

    (Washington University Pain Center
    Washington University in St. Louis, School of Medicine)

  • Ashley Park

    (Washington University Pain Center
    Washington University in St. Louis, School of Medicine)

  • Waylin Yu

    (University of North Carolina at Chapel Hill School of Medicine
    University of North Carolina at Chapel Hill School of Medicine)

  • Thomas L. Kash

    (University of North Carolina at Chapel Hill School of Medicine
    University of North Carolina at Chapel Hill School of Medicine)

  • Robert W. Gereau

    (Washington University Pain Center
    Washington University in St. Louis, School of Medicine
    Washington University in St. Louis)

  • Jose A. Morón

    (Washington University Pain Center
    Washington University in St. Louis, School of Medicine
    Washington University in St. Louis
    Washington University in St. Louis)

Abstract

The hippocampus is pivotal in integrating emotional processing, learning, memory, and reward-related behaviors. The dorsal hippocampus (dHPC) is particularly crucial for episodic, spatial, and associative memory, and has been shown to be necessary for context- and cue-associated reward behaviors. The nucleus accumbens (NAc), a central structure in the mesolimbic reward pathway, integrates the salience of aversive and rewarding stimuli. Despite extensive research on dHPC→NAc direct projections, their sufficiency in driving reinforcement and reward-related behavior remains to be determined. Our study establishes that activating excitatory neurons in the dHPC is sufficient to induce reinforcing behaviors through its direct projections to the dorso-medial subregion of the NAc shell (dmNAcSh). Notably, dynorphin-containing neurons specifically contribute to dHPC-driven reinforcing behavior, even though both dmNAcSh dynorphin- and enkephalin-containing neurons are activated with dHPC stimulation. Our findings unveil a pathway governing reinforcement, advancing our understanding of the hippocampal circuity’s role in reward-seeking behaviors.

Suggested Citation

  • Khairunisa Mohamad Ibrahim & Nicolas Massaly & Hye-Jean Yoon & Rossana Sandoval & Allie J. Widman & Robert J. Heuermann & Sidney Williams & William Post & Sulan Pathiranage & Tania Lintz & Azra Zec & , 2024. "Dorsal hippocampus to nucleus accumbens projections drive reinforcement via activation of accumbal dynorphin neurons," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44836-9
    DOI: 10.1038/s41467-024-44836-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44836-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44836-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vincent Pascoli & Jean Terrier & Julie Espallergues & Emmanuel Valjent & Eoin Cornelius O’Connor & Christian Lüscher, 2014. "Contrasting forms of cocaine-evoked plasticity control components of relapse," Nature, Nature, vol. 509(7501), pages 459-464, May.
    2. Patrick Sweeney & Yunlei Yang, 2015. "An excitatory ventral hippocampus to lateral septum circuit that suppresses feeding," Nature Communications, Nature, vol. 6(1), pages 1-11, December.
    3. Andrew J. Kesner & Rick Shin & Coleman B. Calva & Reuben F. Don & Sue Junn & Christian T. Potter & Leslie A. Ramsey & Ahmed F. Abou-Elnaga & Christopher G. Cover & Dong V. Wang & Hanbing Lu & Yihong Y, 2021. "Supramammillary neurons projecting to the septum regulate dopamine and motivation for environmental interaction in mice," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    4. Tara A. LeGates & Mark D. Kvarta & Jessica R. Tooley & T. Chase Francis & Mary Kay Lobo & Meaghan C. Creed & Scott M. Thompson, 2018. "Reward behaviour is regulated by the strength of hippocampus–nucleus accumbens synapses," Nature, Nature, vol. 564(7735), pages 258-262, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brandon W. Hughes & Jessica L. Huebschman & Evgeny Tsvetkov & Benjamin M. Siemsen & Kirsten K. Snyder & Rose Marie Akiki & Daniel J. Wood & Rachel D. Penrod & Michael D. Scofield & Stefano Berto & Mak, 2024. "NPAS4 supports cocaine-conditioned cues in rodents by controlling the cell type-specific activation balance in the nucleus accumbens," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Dylan C. M. Yeates & Dallas Leavitt & Sajeevan Sujanthan & Nisma Khan & Denada Alushaj & Andy C. H. Lee & Rutsuko Ito, 2022. "Parallel ventral hippocampus-lateral septum pathways differentially regulate approach-avoidance conflict," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Hiroyuki Kawai & Youcef Bouchekioua & Naoya Nishitani & Kazuhei Niitani & Shoma Izumi & Hinako Morishita & Chihiro Andoh & Yuma Nagai & Masashi Koda & Masako Hagiwara & Koji Toda & Hisashi Shirakawa &, 2022. "Median raphe serotonergic neurons projecting to the interpeduncular nucleus control preference and aversion," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    4. Irene Serra & Julio Esparza & Laura Delgado & Cristina Martín-Monteagudo & Margalida Puigròs & Petar Podlesniy & Ramón Trullás & Marta Navarrete, 2022. "Ca2+-modulated photoactivatable imaging reveals neuron-astrocyte glutamatergic circuitries within the nucleus accumbens," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Yun-Feng Zhang & Jialiang Wu & Yingqi Wang & Natalie L. Johnson & Janardhan P. Bhattarai & Guanqing Li & Wenqiang Wang & Camilo Guevara & Hannah Shoenhard & Marc V. Fuccillo & Daniel W. Wesson & Mingh, 2023. "Ventral striatal islands of Calleja neurons bidirectionally mediate depression-like behaviors in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Hao-Shan Chen & Xiao-Long Zhang & Rong-Rong Yang & Guang-Ling Wang & Xin-Yue Zhu & Yuan-Fang Xu & Dan-Yang Wang & Na Zhang & Shou Qiu & Li-Jie Zhan & Zhi-Ming Shen & Xiao-Hong Xu & Gang Long & Chun Xu, 2022. "An intein-split transactivator for intersectional neural imaging and optogenetic manipulation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Himanshu Gangal & Xueyi Xie & Zhenbo Huang & Yifeng Cheng & Xuehua Wang & Jiayi Lu & Xiaowen Zhuang & Amanda Essoh & Yufei Huang & Ruifeng Chen & Laura N. Smith & Rachel J. Smith & Jun Wang, 2023. "Drug reinforcement impairs cognitive flexibility by inhibiting striatal cholinergic neurons," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Bahaaeddin Attaallah & Pierre Petitet & Rhea Zambellas & Sofia Toniolo & Maria Raquel Maio & Akke Ganse-Dumrath & Sarosh R. Irani & Sanjay G. Manohar & Masud Husain, 2024. "The role of the human hippocampus in decision-making under uncertainty," Nature Human Behaviour, Nature, vol. 8(7), pages 1366-1382, July.
    9. Candela Sánchez-Bellot & Rawan AlSubaie & Karyna Mishchanchuk & Ryan W. S. Wee & Andrew F. MacAskill, 2022. "Two opposing hippocampus to prefrontal cortex pathways for the control of approach and avoidance behaviour," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Oliver Barnstedt & Petra Mocellin & Stefan Remy, 2024. "A hippocampus-accumbens code guides goal-directed appetitive behavior," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44836-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.