IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50099-1.html
   My bibliography  Save this article

NPAS4 supports cocaine-conditioned cues in rodents by controlling the cell type-specific activation balance in the nucleus accumbens

Author

Listed:
  • Brandon W. Hughes

    (Medical University of South Carolina)

  • Jessica L. Huebschman

    (Medical University of South Carolina)

  • Evgeny Tsvetkov

    (Medical University of South Carolina)

  • Benjamin M. Siemsen

    (Medical University of South Carolina)

  • Kirsten K. Snyder

    (Medical University of South Carolina)

  • Rose Marie Akiki

    (Medical University of South Carolina
    Medical Scientist Training Program, Medical University of South Carolina)

  • Daniel J. Wood

    (Medical University of South Carolina
    Medical Scientist Training Program, Medical University of South Carolina)

  • Rachel D. Penrod

    (Medical University of South Carolina)

  • Michael D. Scofield

    (Medical University of South Carolina)

  • Stefano Berto

    (Medical University of South Carolina)

  • Makoto Taniguchi

    (Medical University of South Carolina)

  • Christopher W. Cowan

    (Medical University of South Carolina)

Abstract

Powerful associations that link drugs of abuse with cues in the drug-paired environment often serve as prepotent relapse triggers. Drug-associated contexts and cues activate ensembles of nucleus accumbens (NAc) neurons, including D1-class medium spiny neurons (MSNs) that typically promote, and D2-class MSNs that typically oppose, drug seeking. We found that in mice, cocaine conditioning upregulated transiently the activity-regulated transcription factor, Neuronal PAS Domain Protein 4 (NPAS4), in a small subset of NAc neurons. The NPAS4+ NAc ensemble was required for cocaine conditioned place preference. We also observed that NPAS4 functions within NAc D2-, but not D1-, MSNs to support cocaine-context associations and cue-induced cocaine, but not sucrose, seeking. Together, our data show that the NPAS4+ ensemble of NAc neurons is essential for cocaine-context associations in mice, and that NPAS4 itself functions in NAc D2-MSNs to support cocaine-context associations by suppressing drug-induced counteradaptations that oppose relapse-related behaviour.

Suggested Citation

  • Brandon W. Hughes & Jessica L. Huebschman & Evgeny Tsvetkov & Benjamin M. Siemsen & Kirsten K. Snyder & Rose Marie Akiki & Daniel J. Wood & Rachel D. Penrod & Michael D. Scofield & Stefano Berto & Mak, 2024. "NPAS4 supports cocaine-conditioned cues in rodents by controlling the cell type-specific activation balance in the nucleus accumbens," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50099-1
    DOI: 10.1038/s41467-024-50099-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50099-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50099-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ofer Yizhar & Lief E. Fenno & Matthias Prigge & Franziska Schneider & Thomas J. Davidson & Daniel J. O’Shea & Vikaas S. Sohal & Inbal Goshen & Joel Finkelstein & Jeanne T. Paz & Katja Stehfest & Roman, 2011. "Neocortical excitation/inhibition balance in information processing and social dysfunction," Nature, Nature, vol. 477(7363), pages 171-178, September.
    2. Vincent Pascoli & Jean Terrier & Julie Espallergues & Emmanuel Valjent & Eoin Cornelius O’Connor & Christian Lüscher, 2014. "Contrasting forms of cocaine-evoked plasticity control components of relapse," Nature, Nature, vol. 509(7501), pages 459-464, May.
    3. Brenda L. Bloodgood & Nikhil Sharma & Heidi Adlman Browne & Alissa Z. Trepman & Michael E. Greenberg, 2013. "The activity-dependent transcription factor NPAS4 regulates domain-specific inhibition," Nature, Nature, vol. 503(7474), pages 121-125, November.
    4. Marco D. Carpenter & Qiwen Hu & Allison M. Bond & Sonia I. Lombroso & Kyle S. Czarnecki & Carissa J. Lim & Hongjun Song & Mathieu E. Wimmer & R. Christopher Pierce & Elizabeth A. Heller, 2020. "Nr4a1 suppresses cocaine-induced behavior via epigenetic regulation of homeostatic target genes," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    5. Yingxi Lin & Brenda L. Bloodgood & Jessica L. Hauser & Ariya D. Lapan & Alex C. Koon & Tae-Kyung Kim & Linda S. Hu & Athar N. Malik & Michael E. Greenberg, 2008. "Activity-dependent regulation of inhibitory synapse development by Npas4," Nature, Nature, vol. 455(7217), pages 1198-1204, October.
    6. Shiaoching Gong & Chen Zheng & Martin L. Doughty & Kasia Losos & Nicholas Didkovsky & Uta B. Schambra & Norma J. Nowak & Alexandra Joyner & Gabrielle Leblanc & Mary E. Hatten & Nathaniel Heintz, 2003. "A gene expression atlas of the central nervous system based on bacterial artificial chromosomes," Nature, Nature, vol. 425(6961), pages 917-925, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco D. Carpenter & Delaney K. Fischer & Shuo Zhang & Allison M. Bond & Kyle S. Czarnecki & Morgan T. Woolf & Hongjun Song & Elizabeth A. Heller, 2022. "Cell-type specific profiling of histone post-translational modifications in the adult mouse striatum," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Myung Chung & Katsutoshi Imanaka & Ziyan Huang & Akiyuki Watarai & Mu-Yun Wang & Kentaro Tao & Hirotaka Ejima & Tomomi Aida & Guoping Feng & Teruhiro Okuyama, 2024. "Conditional knockout of Shank3 in the ventral CA1 by quantitative in vivo genome-editing impairs social memory in mice," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Alexandre Castonguay & Sébastien Thomas & Frédéric Lesage & Christian Casanova, 2014. "Repetitive and Retinotopically Restricted Activation of the Dorsal Lateral Geniculate Nucleus with Optogenetics," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    4. Giulia Faini & Dimitrii Tanese & Clément Molinier & Cécile Telliez & Massilia Hamdani & Francois Blot & Christophe Tourain & Vincent Sars & Filippo Bene & Benoît C. Forget & Emiliano Ronzitti & Valent, 2023. "Ultrafast light targeting for high-throughput precise control of neuronal networks," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Gregory Lepeu & Ellen Maren & Kristina Slabeva & Cecilia Friedrichs-Maeder & Markus Fuchs & Werner J. Z’Graggen & Claudio Pollo & Kaspar A. Schindler & Antoine Adamantidis & Timothée Proix & Maxime O., 2024. "The critical dynamics of hippocampal seizures," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Pan Xu & Yuanlei Yue & Juntao Su & Xiaoqian Sun & Hongfei Du & Zhichao Liu & Rahul Simha & Jianhui Zhou & Chen Zeng & Hui Lu, 2022. "Pattern decorrelation in the mouse medial prefrontal cortex enables social preference and requires MeCP2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Yu-Jun Wang & Gui-Ying Zan & Cenglin Xu & Xue-Ping Li & Xuelian Shu & Song-Yu Yao & Xiao-Shan Xu & Xiaoyun Qiu & Yexiang Chen & Kai Jin & Qi-Xin Zhou & Jia-Yu Ye & Yi Wang & Lin Xu & Zhong Chen & Jing, 2023. "The claustrum-prelimbic cortex circuit through dynorphin/κ-opioid receptor signaling underlies depression-like behaviors associated with social stress etiology," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Clara Morral & Arshad Ayyaz & Hsuan-Cheng Kuo & Mardi Fink & Ioannis I. Verginadis & Andrea R. Daniel & Danielle N. Burner & Lucy M. Driver & Sloane Satow & Stephanie Hasapis & Reem Ghinnagow & Lixia , 2024. "p53 promotes revival stem cells in the regenerating intestine after severe radiation injury," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Jung Ho Hyun & Kenichiro Nagahama & Ho Namkung & Neymi Mignocchi & Seung-Eon Roh & Patrick Hannan & Sarah Krüssel & Chuljung Kwak & Abigail McElroy & Bian Liu & Mingguang Cui & Seunghwan Lee & Dongmin, 2022. "Tagging active neurons by soma-targeted Cal-Light," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Sofia Madsen & Ana C. Delgado & Christelle Cadilhac & Vanille Maillard & Fabrice Battiston & Carla Marie Igelbüscher & Simon De Neck & Elia Magrinelli & Denis Jabaudon & Ludovic Telley & Fiona Doetsch, 2024. "A fluorescent perilipin 2 knock-in mouse model reveals a high abundance of lipid droplets in the developing and adult brain," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Yun-Feng Zhang & Jialiang Wu & Yingqi Wang & Natalie L. Johnson & Janardhan P. Bhattarai & Guanqing Li & Wenqiang Wang & Camilo Guevara & Hannah Shoenhard & Marc V. Fuccillo & Daniel W. Wesson & Mingh, 2023. "Ventral striatal islands of Calleja neurons bidirectionally mediate depression-like behaviors in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Henry W. Kietzman & Gracy Trinoskey-Rice & Sarah A. Blumenthal & Jidong D. Guo & Shannon L. Gourley, 2022. "Social incentivization of instrumental choice in mice requires amygdala-prelimbic cortex-nucleus accumbens connectivity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Paul B Manis & Michael R Kasten & Ruili Xie, 2019. "Classification of neurons in the adult mouse cochlear nucleus: Linear discriminant analysis," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-14, October.
    14. Noemi S Araújo & Selvin Z Reyes-Garcia & João A F Brogin & Douglas D Bueno & Esper A Cavalheiro & Carla A Scorza & Jean Faber, 2022. "Chaotic and stochastic dynamics of epileptiform-like activities in sclerotic hippocampus resected from patients with pharmacoresistant epilepsy," PLOS Computational Biology, Public Library of Science, vol. 18(4), pages 1-31, April.
    15. Gwen-Jirō Clochard & Aby Mbengue & Clément Mettling & Birane Diouf & Charlotte Faurie & Omar Sene & Emilie Chancerel & Erwan Guichoux & Guillaume Hollard & Michel Raymond & Marc Willinger, 2023. "The effect of the 7R allele at the DRD4 locus on risk tolerance is independent of background risk in Senegalese fishermen," Post-Print hal-03954770, HAL.
    16. Jong Hoon Won & Jacob S. Choi & Joon-Il Jun, 2022. "CCN1 interacts with integrins to regulate intestinal stem cell proliferation and differentiation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Can Tao & Guang-Wei Zhang & Wen-Jian Sun & Junxiang J. Huang & Li I. Zhang & Huizhong Whit Tao, 2024. "Excitation-inhibition imbalance in medial preoptic area circuits underlies chronic stress-induced depression-like states," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Fan Mei & Chen Zhao & Shangjin Li & Zeping Xue & Yueyang Zhao & Yihua Xu & Rongrong Ye & He You & Peng Yu & Xinyu Han & Gregory V. Carr & Daniel R. Weinberger & Feng Yang & Bai Lu, 2024. "Ngfr+ cholinergic projection from SI/nBM to mPFC selectively regulates temporal order recognition memory," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    19. Himanshu Gangal & Xueyi Xie & Zhenbo Huang & Yifeng Cheng & Xuehua Wang & Jiayi Lu & Xiaowen Zhuang & Amanda Essoh & Yufei Huang & Ruifeng Chen & Laura N. Smith & Rachel J. Smith & Jun Wang, 2023. "Drug reinforcement impairs cognitive flexibility by inhibiting striatal cholinergic neurons," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Qingtao Sun & Jianping Zhang & Anan Li & Mei Yao & Guangcai Liu & Siqi Chen & Yue Luo & Zhi Wang & Hui Gong & Xiangning Li & Qingming Luo, 2022. "Acetylcholine deficiency disrupts extratelencephalic projection neurons in the prefrontal cortex in a mouse model of Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50099-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.