IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms10188.html
   My bibliography  Save this article

An excitatory ventral hippocampus to lateral septum circuit that suppresses feeding

Author

Listed:
  • Patrick Sweeney

    (State University of New York Upstate Medical University, 505 Irving Avenue, IHP#3609, Syracuse, New York 13210, USA)

  • Yunlei Yang

    (State University of New York Upstate Medical University, 505 Irving Avenue, IHP#3609, Syracuse, New York 13210, USA)

Abstract

Previous research has focused on feeding circuits residing in the hindbrain and midbrain that govern homeostatic or hedonic control of food intake. However, the feeding circuits controlling emotional or cognitive aspects of food intake are largely unknown. Here we use chemical genetics and optogenetic techniques to dissect appetite control circuits originating from ventral hippocampus (vHPC), a brain region implicated in emotion and cognition. We find that the vHPC projects functional glutamatergic synaptic inputs to the lateral septum (LS) and optogenetic activation of vHPC projections in LS reduces food intake. Consistently, food intake is suppressed by chemogenetic activation of glutamatergic neurons in the vHPC that project to the LS and inactivation of LS neurons blunts vHPC-induced suppression of feeding. Collectively, our results identify an anorexigenic neural circuit originating from vHPC to LS in the brain, revealing a potential therapeutic target for the treatment of anorexia or other appetite disorders.

Suggested Citation

  • Patrick Sweeney & Yunlei Yang, 2015. "An excitatory ventral hippocampus to lateral septum circuit that suppresses feeding," Nature Communications, Nature, vol. 6(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms10188
    DOI: 10.1038/ncomms10188
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10188
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khairunisa Mohamad Ibrahim & Nicolas Massaly & Hye-Jean Yoon & Rossana Sandoval & Allie J. Widman & Robert J. Heuermann & Sidney Williams & William Post & Sulan Pathiranage & Tania Lintz & Azra Zec & , 2024. "Dorsal hippocampus to nucleus accumbens projections drive reinforcement via activation of accumbal dynorphin neurons," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Hao-Shan Chen & Xiao-Long Zhang & Rong-Rong Yang & Guang-Ling Wang & Xin-Yue Zhu & Yuan-Fang Xu & Dan-Yang Wang & Na Zhang & Shou Qiu & Li-Jie Zhan & Zhi-Ming Shen & Xiao-Hong Xu & Gang Long & Chun Xu, 2022. "An intein-split transactivator for intersectional neural imaging and optogenetic manipulation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Dylan C. M. Yeates & Dallas Leavitt & Sajeevan Sujanthan & Nisma Khan & Denada Alushaj & Andy C. H. Lee & Rutsuko Ito, 2022. "Parallel ventral hippocampus-lateral septum pathways differentially regulate approach-avoidance conflict," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms10188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.